论文标题
卵石通量调节的行星形成对巨型行星形成的影响
The impact of pebble flux regulated planetesimal formation on giant planet formation
论文作者
论文摘要
通过直径为100 km的行星积聚,形成气体巨型行星,这是一个典型的大小,是由自助力辅助行星形成的典型大小,通常被认为是效率低下的。因此,许多型号使用小型KM大小的行星模具或调用卵石的积聚。此外,基于行星积聚的模型通常使用径向分布的行星临时假设以最小的质量太阳星云时尚分布。我们希望研究具有动力学模型的各种初始径向密度分布的影响,以形成行星对所产生的行星群体的影响。在此过程中,我们强调了尘埃进化的早期阶段在以下行星形成中脉冲磁盘中卵石和行星的早期阶段的指示作用。我们已经实施了两个种群模型,以实现固体进化和一个卵石通量的行星形成模型,以形成我们的全球行星人群综合模型。该框架用于研究行星形成对行星形成的全球影响。作为参考,我们将动态形成的行星表面密度与行星可能的不同径向密度斜率的临时设定分布进行比较。即使需要,它不仅是总的行星磁盘质量,而是行星表面密度斜率,然后是行星模拟的形成机理,可以通过行星吸收来实现行星的生长。在间隔磁盘的内部区域,高度冷凝的区域仅100公里大小的行星可能会导致气体巨大的生长。卵石通量调节的行星形成强烈促进行星的形成,因为它是产生陡峭的行星密度剖面的高效机制。我们发现这导致纯行星积聚已经在1 Au内部100 km内形成了巨型行星。
Forming gas giant planets by the accretion of 100 km diameter planetesimals, a typical size that results from self-gravity assisted planetesimal formation, is often thought to be inefficient. Many models therefore use small km-sized planetesimals, or invoke the accretion of pebbles. Furthermore, models based on planetesimal accretion often use the ad hoc assumption of planetesimals distributed radially in a minimum mass solar nebula fashion. We wish to investigate the impact of various initial radial density distributions in planetesimals with a dynamical model for the formation of planetesimals on the resulting population of planets. In doing so, we highlight the directive role of the early stages of dust evolution into pebbles and planetesimals in the circumstellar disk on the following planetary formation. We have implemented a two population model for solid evolution and a pebble flux regulated model for planetesimal formation into our global model for planet population synthesis. This framework is used to study the global effect of planetesimal formation on planet formation. As reference, we compare our dynamically formed planetesimal surface densities with ad-hoc set distributions of different radial density slopes of planetesimals. Even though required, it is not solely the total planetesimal disk mass, but the planetesimal surface density slope and subsequently the formation mechanism of planetesimals, that enables planetary growth via planetesimal accretion. Highly condensed regions of only 100 km sized planetesimals in the inner regions of circumstellar disks can lead to gas giant growth. Pebble flux regulated planetesimal formation strongly boosts planet formation, because it is a highly effective mechanism to create a steep planetesimal density profile. We find this to lead to the formation of giant planets inside 1 au by 100 km already by pure planetesimal accretion.