论文标题

自动发言人产生

Automated Utterance Generation

论文作者

Parikh, Soham, Vohra, Quaizar, Tiwari, Mitul

论文摘要

会话AI助理变得流行,提问是任何对话助手的重要组成部分。使用相关的话语作为提问的功能,已显示出可以提高对话助手检索正确答案的精度和回忆。因此,从知识库文章中产生相关话语(句子或短语)的目的是由标题和描述组成。但是,产生良好的话语通常需要大量的手动努力,从而需要自动发言。在本文中,我们提出了一种说服生成系统,1)使用提取性摘要从描述中提取重要句子,2)使用多种释义技术来生成标题和摘要句子的各种释义,以及3)选择良好的候选人借助新颖的候选人选择算法。

Conversational AI assistants are becoming popular and question-answering is an important part of any conversational assistant. Using relevant utterances as features in question-answering has shown to improve both the precision and recall for retrieving the right answer by a conversational assistant. Hence, utterance generation has become an important problem with the goal of generating relevant utterances (sentences or phrases) from a knowledge base article that consists of a title and a description. However, generating good utterances usually requires a lot of manual effort, creating the need for an automated utterance generation. In this paper, we propose an utterance generation system which 1) uses extractive summarization to extract important sentences from the description, 2) uses multiple paraphrasing techniques to generate a diverse set of paraphrases of the title and summary sentences, and 3) selects good candidate paraphrases with the help of a novel candidate selection algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源