论文标题

常规模式发现和单个旅行行为中的异常检测

Routine pattern discovery and anomaly detection in individual travel behavior

论文作者

Sun, Lijun, Chen, Xinyu, He, Zhaocheng, Miranda-Moreno, Luis F.

论文摘要

在研究和实践中发现模式和检测单个旅行行为中的异常是一个至关重要的问题。在本文中,我们通过构建一个概率框架来建立单个时空旅行行为数据(例如,旅行记录和轨迹数据)来解决此问题。我们开发了一个二维潜在差异分配(LDA)模型,以表征每个旅行者时空旅行记录的生成机制。该模型分别为空间维度和时间维度引入了两个独立的因子矩阵,并在单个级别上使用二维核心结构,以有效地对关节相互作用和复杂的依赖性进行建模。该模型可以以不受监督的方式有效地总结了从非常稀疏的跳闸序列的空间和时间维度上的旅行行为模式。这样,复杂的旅行行为可以建模为代表性和可解释的时空模式的混合物。通过在旅行者的未来/看不见的时空记录上应用训练有素的模型,我们可以通过使用困惑评分这些观察结果来检测她的行为异常。我们证明了在现实的车牌识别(LPR)数据集中提出的建模框架的有效性。结果证实了统计学习方法在建模稀疏单个旅行行为数据中的优势。这种类型的模式发现和异常检测应用程序可以为交通监控,执法和个人旅行行为分析提供有用的见解。

Discovering patterns and detecting anomalies in individual travel behavior is a crucial problem in both research and practice. In this paper, we address this problem by building a probabilistic framework to model individual spatiotemporal travel behavior data (e.g., trip records and trajectory data). We develop a two-dimensional latent Dirichlet allocation (LDA) model to characterize the generative mechanism of spatiotemporal trip records of each traveler. This model introduces two separate factor matrices for the spatial dimension and the temporal dimension, respectively, and use a two-dimensional core structure at the individual level to effectively model the joint interactions and complex dependencies. This model can efficiently summarize travel behavior patterns on both spatial and temporal dimensions from very sparse trip sequences in an unsupervised way. In this way, complex travel behavior can be modeled as a mixture of representative and interpretable spatiotemporal patterns. By applying the trained model on future/unseen spatiotemporal records of a traveler, we can detect her behavior anomalies by scoring those observations using perplexity. We demonstrate the effectiveness of the proposed modeling framework on a real-world license plate recognition (LPR) data set. The results confirm the advantage of statistical learning methods in modeling sparse individual travel behavior data. This type of pattern discovery and anomaly detection applications can provide useful insights for traffic monitoring, law enforcement, and individual travel behavior profiling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源