论文标题

分子云中的气相元素丰度(宝石)。 ii。在寻求分子云中的硫水库:$ h_ {2} s $ case

Gas phase Elemental abundances in Molecular cloudS (GEMS). II. On the quest for the sulphur reservoir in molecular clouds: the $H_{2}S$ case

论文作者

Navarro-Almaida, D., Gal, R. Le, Fuente, A., Rivière-Marichalar, P., Wakelam, V., Cazaux, S., Caselli, P., Laas, Jacob C., Alonso-Albi, T., Loison, J. C., Gerin, M., Kramer, C., Roueff, E., Bachiller, R., Commerçon, B., Friesen, R., García-Burillo, S., Goicoechea, J. R., Giuliano, B. M., Jiménez-Serra, I., Kirk, J. M., Lattanzi, V., Malinen, J., Marcelino, N., Martín-Domènech, R., Caro, G. M. Muñoz, Pineda, J., Tercero, B., Morales, S. P. Treviño, Roncero, O., Hacar, A., Tafalla, M., Ward-Thompson, D.

论文摘要

硫是宇宙中最丰富的元素之一。令人惊讶的是,硫化分子在星际培养基中不如预期的那么丰富,而主硫储层的身份仍然是一个悬而未决的问题。我们的目标是在乌云中研究H $ _ {2} $ S化学反应,因为该稳定分子是潜在的硫储层。使用CS的毫米观测值,因此,H $ _ {2} $ S及其同位素学,我们确定物理条件以及H $ _ {2} $ s沿核心TMC 1-C,TMC 1-CP和Barnard 1B的丰度。然后,使用气体谷物模型Nautilus来对硫化学进行建模,并探索光吸收和化学解吸对H $ _2 $ S丰度的影响。我们的模型表明,化学解吸是深色内核中气相H $ _2 $ s的主要来源。仅当我们假设化学解吸率降低超过10倍时,才能拟合测得的H $ _ {2} $ s的丰度。解吸速率的这种变化与谷物表面上厚的H $ _2 $ O和CO ICE披风的形成一致。观察到的SO和H $ _2 $ s的丰度与我们的预测采用了不耗尽硫丰度的价值非常吻合。但是,CS丰度高估了5-10美元的$ 5-10。沿着三个核心,原子质被预测为主要硫储层。我们得出的结论是,假设硫的丰度和化学解吸是H $ _2 $ s的主要来源,气态H $ _2 $ s的丰度得到了很好的复制。观察到的h $ _ {2} $ s丰度的行为表明解吸效率不断变化,这将探测这些内核中的雪地线。然而,我们的模型高估了观察到的气相CS丰度。鉴于硫化学的不确定性,我们的数据与宇宙元素的丰度一致,不确定性为10。

Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium, and the identity of the main sulphur reservoir is still an open question. Our goal is to investigate the H$_{2}$S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. Using millimeter observations of CS, SO, H$_{2}$S, and their isotopologues, we determine the physical conditions and H$_{2}$S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model Nautilus is then used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H$_2$S abundance. Our model shows that chemical desorption is the main source of gas-phase H$_2$S in dark cores. The measured H$_{2}$S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when $n_{\rm H}>2\times10^{4}$. This change in the desorption rate is consistent with the formation of thick H$_2$O and CO ice mantles on grain surfaces. The observed SO and H$_2$S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of $5-10$. Along the three cores, atomic S is predicted to be the main sulphur reservoir. We conclude that the gaseous H$_2$S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H$_2$S. The behavior of the observed H$_{2}$S abundance suggests a changing desorption efficiency, which would probe the snowline in these cores. Our model, however, overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源