论文标题
FK空间的某些子空间和延期cesàroconultity
Some Subspaces of an FK Space and Deferred Cesàro Conullity
论文作者
论文摘要
在本文中,我们构建了新重要的子空间$ d_ {p}^{q} s $,$ d_ {p}^{q} w $,$ d_ {p}^{q}^{q} f $ and $ d_ {p} {p}^{q}^{q}^{q}^{q}^{q} b $ for本地coNvex fk-space $ x $ x $ x $ co $ x $ coping $ x $ pactecention space face space finition fide,然后,我们表明这些子空间之间存在关系。此外,我们研究了一个FK空间相对于另一个FK空间的递延cesàrocolultity,并给出了一些重要的结果。最后,我们检查了绝对总和域$ l_a $的延期cesàroconultity,并表明如果$ l_a $是推迟的cesàroconull,则$ a $不能为$ l $ - 可替代。
In this paper, we construct new important the subspaces $D_{p}^{q}S$, $D_{p}^{q}W$, $D_{p}^{q}F$ and $D_{p}^{q}B$ for a locally convex FK-space $X$ containing $ϕ$, the space of finite sequences. Then we show that there is relation among these subspaces. Also, we study deferred Cesàro conullity of one FK-space with respect to another, and we give some important results. Finally, we examine the deferred Cesàro conullity of the absolute summability domain $l_A$, and show that if $l_A$ is deferred Cesàro conull, then $A$ cannot be $l$-replaceable.