论文标题
在Covid-19中发现关联相关研究论文
Discovering associations in COVID-19 related research papers
论文作者
论文摘要
19009年的大流行已经证明自己是一个全球挑战。它证明了人类的脆弱性。它还动员了来自不同科学和不同国家的研究人员,以寻求与这种潜在致命疾病作斗争的方法。与此相符,我们的研究分析了使用关联规则文本挖掘与Covid-19和冠状病毒相关研究有关的论文摘要,以便一方面找到最有趣的单词,另一方面是它们之间的关系。然后,将一种称为信息制图的方法应用于从大量关联规则中提取结构化知识。基于这些方法,我们的研究目的是展示研究人员在整个历史上如何在类似的流行病/大流行状况中做出反应。
A COVID-19 pandemic has already proven itself to be a global challenge. It proves how vulnerable humanity can be. It has also mobilized researchers from different sciences and different countries in the search for a way to fight this potentially fatal disease. In line with this, our study analyses the abstracts of papers related to COVID-19 and coronavirus-related-research using association rule text mining in order to find the most interestingness words, on the one hand, and relationships between them on the other. Then, a method, called information cartography, was applied for extracting structured knowledge from a huge amount of association rules. On the basis of these methods, the purpose of our study was to show how researchers have responded in similar epidemic/pandemic situations throughout history.