论文标题
COVID-19-一个简单的统计模型,用于预测疾病早期阶段中的ICU负载
Covid-19 -- A simple statistical model for predicting ICU load in early phases of the disease
论文作者
论文摘要
在进行的Covid-19大流行中,一个主要的瓶颈是重症监护床数量有限。由于感染的动态发展以及感染患者的时间段与一部分进入重症监护病房(ICU)之间的时间滞后,因此很容易低估对未来重症监护的需求。为了从报告的感染中推断未来的ICU负载,我们建议一个简单的统计模型,该模型(1)考虑到时间滞后,(2)允许根据感染的未来增长来进行预测。我们已经评估了三个地区的模型,即柏林(德国),伦巴第(意大利)和马德里(西班牙)。在广泛的遏制措施产生影响之前,我们首先估计特定区域模型参数。对于柏林的ICU率为6%,时间滞后6天,平均在ICU中停留12天的数据可提供数据的最佳拟合度,而对于Lombardy和Madrid来说,ICU率更高(18%和15%),时间延迟(0和3天)和ICU Shorter的时间滞后(0和3天),平均住宿(4和8天)。然后使用特定区域的模型来预测未来的ICU负载,假设持续的指数阶段具有变化的增长率(0-15%)或线性生长。因此,该模型可以帮助预测ICU容量的潜在超出可能性。尽管我们的预测基于小型数据集并无视非平稳动力学,但我们的模型简单,健壮,并且在数据稀缺时可以在疾病的早期阶段使用。
One major bottleneck in the ongoing COVID-19 pandemic is the limited number of critical care beds. Due to the dynamic development of infections and the time lag between when patients are infected and when a proportion of them enters an intensive care unit (ICU), the need for future intensive care can easily be underestimated. To infer future ICU load from reported infections, we suggest a simple statistical model that (1) accounts for time lags and (2) allows for making predictions depending on different future growth of infections. We have evaluated our model for three regions, namely Berlin (Germany), Lombardy (Italy), and Madrid (Spain). Before extensive containment measures made an impact, we first estimate the region-specific model parameters. Whereas for Berlin, an ICU rate of 6%, a time lag of 6 days, and an average stay of 12 days in ICU provide the best fit of the data, for Lombardy and Madrid the ICU rate was higher (18% and 15%) and the time lag (0 and 3 days) and the average stay (4 and 8 days) in ICU shorter. The region-specific models are then used to predict future ICU load assuming either a continued exponential phase with varying growth rates (0-15%) or linear growth. Thus, the model can help to predict a potential exceedance of ICU capacity. Although our predictions are based on small data sets and disregard non-stationary dynamics, our model is simple, robust, and can be used in early phases of the disease when data are scarce.