论文标题

与近视甲骨文的通道修剪的显着指标的组成

Composition of Saliency Metrics for Channel Pruning with a Myopic Oracle

论文作者

Persand, Kaveena, Anderson, Andrew, Gregg, David

论文摘要

可以通过修剪训练的网络的权重来减少卷积神经网络(CNN)所需的计算和内存。修剪的指导下是由修剪的显着性指导,启发式上近似于与去除特定权重相关的损耗函数的变化。已经提出了许多修剪信号,但是每个启发式的性能都取决于特定训练的网络。这给数据科学家带来了一个艰难的选择。在整个修剪过程中使用任何一个显着性指标时,我们会冒着无效的度量假设的风险,导致指标做出不当的决定。理想情况下,我们可以结合不同显着性指标的最佳方面。但是,尽管有广泛的文献综述,但我们仍无法找到有关构成不同显着性指标的任何先前工作。主要困难在于结合不同显着性指标的数值输出,而这些指标并非直接可比。 我们提出了一种构成几种原始修剪储蓄的方法,以利用每个显着性措施做得很好的情况。我们的实验表明,分析的组成避免了许多单个储蓄识别的不良修剪选择。在大多数情况下,我们的方法比最佳的个人修剪显着性更好。

The computation and memory needed for Convolutional Neural Network (CNN) inference can be reduced by pruning weights from the trained network. Pruning is guided by a pruning saliency, which heuristically approximates the change in the loss function associated with the removal of specific weights. Many pruning signals have been proposed, but the performance of each heuristic depends on the particular trained network. This leaves the data scientist with a difficult choice. When using any one saliency metric for the entire pruning process, we run the risk of the metric assumptions being invalidated, leading to poor decisions being made by the metric. Ideally we could combine the best aspects of different saliency metrics. However, despite an extensive literature review, we are unable to find any prior work on composing different saliency metrics. The chief difficulty lies in combining the numerical output of different saliency metrics, which are not directly comparable. We propose a method to compose several primitive pruning saliencies, to exploit the cases where each saliency measure does well. Our experiments show that the composition of saliencies avoids many poor pruning choices identified by individual saliencies. In most cases our method finds better selections than even the best individual pruning saliency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源