论文标题
智能医疗保健监控的基于机器学习的框架
A Machine Learning Based Framework for the Smart Healthcare Monitoring
论文作者
论文摘要
在本文中,我们为智能医疗保健系统提出了一个新颖的框架,在该框架中,我们采用了压缩感(CS)以及基于最先进的机器学习的DeNoiser以及乘数方法(ADMM)结构的交替方向的组合。由于ADMM的模块化结构,这种集成大大简化了LowComplexity编码器的软件实现。此外,我们专注于检测图像流的动作。因此,因此研究的主要目的是将图像尽可能清晰地重构,因此有助于在训练有素的分类器上检测步骤。对于这个有效的智能健康监测框架,我们为秋季攻击分类器采用训练有素的二元卷积神经网络(CNN)分类器,因为该方案是监视场景的一部分。在这种情况下,我们应对违约,因此,我们压缩,传输和重建跌落。实验结果证明了网络参数的影响以及与传统方法相比,该提案的显着绩效增益。
In this paper, we propose a novel framework for the smart healthcare system, where we employ the compressed sensing (CS) and the combination of the state-of-the-art machine learning based denoiser as well as the alternating direction of method of multipliers (ADMM) structure. This integration significantly simplifies the software implementation for the lowcomplexity encoder, thanks to the modular structure of ADMM. Furthermore, we focus on detecting fall down actions from image streams. Thus, teh primary purpose of thus study is to reconstruct the image as visibly clear as possible and hence it helps the detection step at the trained classifier. For this efficient smart health monitoring framework, we employ the trained binary convolutional neural network (CNN) classifier for the fall-action classifier, because this scheme is a part of surveillance scenario. In this scenario, we deal with the fallimages, thus, we compress, transmit and reconstruct the fallimages. Experimental results demonstrate the impacts of network parameters and the significant performance gain of the proposal compared to traditional methods.