论文标题

蛋白质结构对共转运折叠进化的影响

Effect of protein structure on evolution of cotranslational folding

论文作者

Zhao, Victor, Jacobs, William M., Shakhnovich, Eugene I.

论文摘要

共通折叠取决于新生蛋白的折叠速度和稳定性。但是,很难预测哪种蛋白质共转旋折叠。在这里,我们模拟了模型蛋白的演化,以研究天然结构如何影响共透明折叠的演变。我们开发了一个模型,该模型将蛋白质折叠连接到翻译后的蛋白质折叠与细胞适应性。模型蛋白会发展出改善的折叠速度和稳定性,蛋白质采用了快速折叠的两种策略之一。低接触顺序蛋白演变为折叠式旋转。这种蛋白质在翻译过程中早期采用天然构象,随后翻译残基建立了其他天然接触。另一方面,直到整个链几乎被挤出,高接触顺序蛋白在其本地构象中往往不稳定。我们还模拟了缓慢翻译密码子的演变,发现在某些位置处的翻译速度较慢会增强共转换折叠。最后,我们使用先前发表的数据集研究了实际蛋白质结构,该数据集鉴定出大肠杆菌基因中进化保守的稀有密码子,并将此类密码子与共转移折叠中间体相关联。我们发现,在保守稀有密码子之前的蛋白质下结构往往具有较低的接触顺序,这与我们发现较低的接触顺序蛋白更有可能折叠式转换。我们的工作表明,进化选择压力如何导致具有局部接触拓扑的蛋白质以进化惯性折叠。

Cotranslational folding depends on the folding speed and stability of the nascent protein. It remains difficult, however, to predict which proteins cotranslationally fold. Here, we simulate evolution of model proteins to investigate how native structure influences evolution of cotranslational folding. We developed a model that connects protein folding during and after translation to cellular fitness. Model proteins evolved improved folding speed and stability, with proteins adopting one of two strategies for folding quickly. Low contact order proteins evolve to fold cotranslationally. Such proteins adopt native conformations early on during the translation process, with each subsequently translated residue establishing additional native contacts. On the other hand, high contact order proteins tend not to be stable in their native conformations until the full chain is nearly extruded. We also simulated evolution of slowly translating codons, finding that slower translation speeds at certain positions enhances cotranslational folding. Finally, we investigated real protein structures using a previously published dataset that identified evolutionarily conserved rare codons in E. coli genes and associated such codons with cotranslational folding intermediates. We found that protein substructures preceding conserved rare codons tend to have lower contact orders, in line with our finding that lower contact order proteins are more likely to fold cotranslationally. Our work shows how evolutionary selection pressure can cause proteins with local contact topologies to evolve cotranslational folding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源