论文标题

阿尔伯蒂 - 乌尔曼(Uhlmann

Alberti--Uhlmann problem on Hardy--Littlewood--Pólya majorization

论文作者

Huang, Jinghao, Sukochev, Fedor

论文摘要

我们充分描述了与半五届von neumann代数相关的非交换$ l_1 $空间中自动化元素的双随机轨道,该空间与1980年代艾尔伯蒂(Alberti)和乌尔曼(Uhlmann)提出的问题回答了文献中的几个结果。 It follows further from our methods that, for any $σ$-finite von Neumann algebra $\mathcal{M}$ equipped a semifinite infinite faithful normal trace $τ$, there exists a self-adjoint operator $y\in L_1(\mathcal{M},τ)$ such that the doubly stochastic orbit of $y$ does not coincide with the orbit从Hardy-Littlewood-Pólya的意义上讲,$ Y $的$ $,这证实了Hiai的猜想。但是,我们表明Hiai的猜想因非$σ$ -finite von Neumann代数而失败。本文的主要结果还回答了1960年代由于卢森堡和RYFF引起的(非共同的)无限问题。

We fully describe the doubly stochastic orbit of a self-adjoint element in the noncommutative $L_1$-space affiliated with a semifinite von Neumann algebra, which answers a problem posed by Alberti and Uhlmann in the 1980s, extending several results in the literature. It follows further from our methods that, for any $σ$-finite von Neumann algebra $\mathcal{M}$ equipped a semifinite infinite faithful normal trace $τ$, there exists a self-adjoint operator $y\in L_1(\mathcal{M},τ)$ such that the doubly stochastic orbit of $y$ does not coincide with the orbit of $y$ in the sense of Hardy--Littlewood--Pólya, which confirms a conjecture by Hiai. However, we show that Hiai's conjecture fails for non-$σ$-finite von Neumann algebras. The main result of the present paper also answers the (noncommutative) infinite counterparts of problems due to Luxemburg and Ryff in the 1960s.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源