论文标题

相变的拓扑持久机

Topological Persistence Machine of Phase Transitions

论文作者

Tran, Quoc Hoan, Chen, Mark, Hasegawa, Yoshihiko

论文摘要

使用数据驱动的方法对相变的研究很具有挑战性,尤其是当对系统的先验知识很少时。拓扑数据分析是表征数据形状的新兴框架,最近在检测材料科学(例如玻璃 - 液体过渡)中的结构过渡方面取得了成功。但是,从物理状态获得的数据可能没有明确的形状作为结构材料。因此,我们提出了一个通用框架,称为“拓扑持久机”,以构建来自状态中相关性的数据形状,以便我们随后可以通过形状的定性变化来解密相变。我们的框架可以在相转换分析中采用有效而统一的方法。我们证明了该方法在检测经典XY模型中的Berezinskii-Kosterlitz-Kosterlitz- theless the相变的功效,以及在横向ISISING和BOSE-HUBES-HUBBARD模型中的量子相变。有趣的是,尽管这些相变已被证明很难使用传统方法进行分析,但它们可以通过我们的框架进行表征,而无需先验的阶段知识。因此,我们的方法有望广泛适用,并将为探索实验物理系统的阶段提供实用的见解。

The study of phase transitions using data-driven approaches is challenging, especially when little prior knowledge of the system is available. Topological data analysis is an emerging framework for characterizing the shape of data and has recently achieved success in detecting structural transitions in material science, such as the glass--liquid transition. However, data obtained from physical states may not have explicit shapes as structural materials. We thus propose a general framework, termed "topological persistence machine," to construct the shape of data from correlations in states, so that we can subsequently decipher phase transitions via qualitative changes in the shape. Our framework enables an effective and unified approach in phase transition analysis. We demonstrate the efficacy of the approach in detecting the Berezinskii--Kosterlitz--Thouless phase transition in the classical XY model and quantum phase transitions in the transverse Ising and Bose--Hubbard models. Interestingly, while these phase transitions have proven to be notoriously difficult to analyze using traditional methods, they can be characterized through our framework without requiring prior knowledge of the phases. Our approach is thus expected to be widely applicable and will provide practical insights for exploring the phases of experimental physical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源