论文标题

球形对称标量头发,用于带电黑洞

Spherically Symmetric Scalar Hair for Charged Black Holes

论文作者

Hong, Jeong-Pyong, Suzuki, Motoo, Yamada, Masaki

论文摘要

Mayo和Bekenstein的无头发定理指出,没有非超级静态和球形带电的黑洞,并以具有自相互作用潜力的带电标量场的形式赋予头发。在我们最近的工作中,我们证明了标量质量项在渐近无穷大的效果很重要,该渐近性无穷大属于证明无发品定理。在本文中,我们证明了实际上存在静态和球形带电的标量头发,被称为Q毛,被称为Q毛,周围是带电的黑洞,考虑到了指标和量规场。我们还讨论了Q-cloud,它是在Reissner-NordströmBlack Hole周围没有反应的情况下构建的,在一定限制下与Q毛的近似值很好。

The no-hair theorem by Mayo and Bekenstein states that there exists no non-extremal static and spherical charged black hole endowed with hair in the form of a charged scalar field with a self-interaction potential. In our recent work, we showed that the effect of a scalar mass term is important at an asymptotic infinity, which was omitted to prove the no-hair theorem. In this paper, we demonstrate that there actually exists static and spherical charged scalar hair, dubbed as Q-hair, around charged black holes, by taking into account the backreaction to the metric and gauge field. We also discuss that Q-cloud, which is constructed without the backreaction around a Reissner-Nordström black hole, is a good approximation to Q-hair under a certain limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源