论文标题

preisach图和最长增加子序列

The Preisach graph and longest increasing subsequences

论文作者

Ferrari, Patrik L., Mungan, Muhittin, Terzi, M. Mert

论文摘要

Preisach图是与{\ cal s} _n $中的置换$ρ\关联的有向图。我们在其顶点和增加$ρ$的子序列之间给出了明确的培训,该属性的长度等于相应顶点的嵌套程度,在循环的层次结构内和图形的子鉴定。结果,preisach图的嵌套程度等于最长增加的子序列的长度。

The Preisach graph is a directed graph associated with a permutation $ρ\in{\cal S}_N$. We give an explicit bijection between its vertices and increasing subsequences of $ρ$ with the property that the length of a subsequence equals to the degree of nesting of the corresponding vertex inside a hierarchy of cycles and sub-cycles of the graph. As a consequence, the nesting degree of the Preisach graph equals the length of the longest increasing subsequence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源