论文标题

多级系统中弗雷德金门的最佳合成

Optimal synthesis of the Fredkin gate in a multilevel system

论文作者

Liu, Wen-Qiang, Wei, Hai-Rui

论文摘要

三峰弗雷德金门的最佳成本是5个两倍的纠缠大门,当限制在受控的不(CNOT)门时,高架爬升至8。通过利用更高维度的希尔伯特空间,我们将三Q码弗雷德金门的成本从8个cnots降低到5个最近的邻居cnots。我们还提出了具有2N+3个CNOT和2N单QUDIT操作的N-Control-Qubit Fredkin门的构造。最后,我们设计了光子体系结构中的确定性和非确定性的三Q Qubit Fredkin大门。非确定的三量弗雷德金门的成本进一步降低到了4个最近的邻居cnots,这种门的成功由单光子检测器宣传。我们的见解弥合了n量量子计算的理论下限与当前最佳结果之间的差距。

The optimal cost of a three-qubit Fredkin gate is 5 two-qubit entangling gates, and the overhead climbs to 8 when restricted to controlled-not (CNOT) gates. By harnessing higher-dimensional Hilbert spaces, we reduce the cost of a three-qubit Fredkin gate from 8 CNOTs to 5 nearest-neighbor CNOTs. We also present construction of an n-control-qubit Fredkin gate with 2n+3 CNOTs and 2n single-qudit operations. Finally, we design deterministic and nondeterministic three-qubit Fredkin gates in photonic architectures. The cost of a nondeterministic three-qubit Fredkin gate is further reduced to 4 nearest-neighbor CNOTs, and the success of such a gate is heralded by a single-photon detector. Our insights bridge the gap between the theoretical lower bound and the current best result for the n-qubit quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源