论文标题

具有样品相关性的广义标签增强

Generalized Label Enhancement with Sample Correlations

论文作者

Zheng, Qinghai, Zhu, Jihua, Tang, Haoyu, Liu, Xinyuan, Li, Zhongyu, Lu, Huimin

论文摘要

最近,标签分布学习(LDL)在机器学习中引起了很多关注,其中从标签实例中学到了LDL模型。与单标签和多标签注释不同,标签分布描述了该实例,该实例通过具有不同强度的多个标签,可容纳更一般的场景。由于大多数现有的机器学习数据集仅提供逻辑标签,因此在许多现实世界中,标签发行版不可用。为了解决这个问题,我们提出了两种新型的标签增强方法,即具有样品相关性(LESC)的标签增强和具有样品相关性(GLESC)的广义标签增强。更具体地说,LESC采用特征空间中样品的低排名表示,GLESC利用了张量的多级最小化,以进一步研究特征空间和标签空间中的样品相关性。受益于样本相关性,提出的方法可以提高标签增强的性能。 14个基准数据集的广泛实验证明了我们方法的有效性和优势。

Recently, label distribution learning (LDL) has drawn much attention in machine learning, where LDL model is learned from labelel instances. Different from single-label and multi-label annotations, label distributions describe the instance by multiple labels with different intensities and accommodate to more general scenes. Since most existing machine learning datasets merely provide logical labels, label distributions are unavailable in many real-world applications. To handle this problem, we propose two novel label enhancement methods, i.e., Label Enhancement with Sample Correlations (LESC) and generalized Label Enhancement with Sample Correlations (gLESC). More specifically, LESC employs a low-rank representation of samples in the feature space, and gLESC leverages a tensor multi-rank minimization to further investigate the sample correlations in both the feature space and label space. Benefitting from the sample correlations, the proposed methods can boost the performance of label enhancement. Extensive experiments on 14 benchmark datasets demonstrate the effectiveness and superiority of our methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源