论文标题
Goeritz桥分解组
Goeritz groups of bridge decompositions
论文作者
论文摘要
对于$ 3 $ -SPHERE中链接的桥梁分解,我们将Goeritz组定义为$ 3 $ -Sphere的定向性传播同态同态同型同位素类别的组,该类别保留了桥接球和链接的每个链接。在描述了该组的基本特性之后,我们讨论了最小伪anosov熵的渐近行为。这为原始的$ 3 $ -Sphere和真正的投射空间的Heegaard分裂组的最小熵的渐近行为提供了应用。
For a bridge decomposition of a link in the $3$-sphere, we define the Goeritz group to be the group of isotopy classes of orientation-preserving homeomorphisms of the $3$-sphere that preserve each of the bridge sphere and link setwise. After describing basic properties of this group, we discuss the asymptotic behavior of the minimal pseudo-Anosov entropies. This gives an application to the asymptotic behavior of the minimal entropies for the original Goeritz groups of Heegaard splittings of the $3$-sphere and the real projective space.