论文标题
旋转热木星的潮气振荡
Tidal Oscillations of Rotating Hot Jupiters
论文作者
论文摘要
我们计算由近乎等粒子对流芯和几何呈稀薄的辐射包膜组成的均匀旋转热木星的小幅度引力和热潮汐。我们将对流芯中的流体视为粘性流体,并求解线性化的Navier Stokes方程以获得核心的潮汐响应,前提是Ekman Number $ {\ rm ek} $是一个常数参数。在辐射包膜中,我们考虑了辐射耗散对响应的影响。潮汐响应的特性取决于信封中的热时间尺度$τ_*$,而核心中的ekman编号EK和天气中的强迫频率$ω$在惯性范围内是否在惯性范围内,其中惯性范围由$ | | | \le2Ω$定义为旋转频率$ $ω$。如果$ {\ rm ek} \ gtrsim 10^{ - 7} $,则核心中的粘性耗散在信封中以$τ_*\ gtrsim 1 $ 1 $ day主导。但是,如果$ {\ rm ek} \ Lessim 10^{ - 7} $,但是,粘性耗散与热贡献相当或小,并且信封起着确定潮汐扭矩的重要作用。如果强迫在惯性范围内,则使用核心惯性模式的潮汐强迫的频率共振会显着影响潮汐扭矩,从而产生许多扭矩的共振峰。根据峰值扭矩的迹象,我们建议存在与核惯性模式共振的情况,阻碍了行星的自旋和轨道运动之间的同步过程。
We calculate small amplitude gravitational and thermal tides of uniformly rotating hot Jupiters composed of a nearly isentropic convective core and a geometrically thin radiative envelope. We treat the fluid in the convective core as a viscous fluid and solve linearized Navier Stokes equations to obtain tidal responses of the core, assuming that the Ekman number ${\rm Ek}$ is a constant parameter. In the radiative envelope, we take account of the effects of radiative dissipations on the responses. The properties of tidal responses depend on thermal timescales $τ_*$ in the envelope and Ekman number Ek in the core and on weather the forcing frequency $ω$ is in the inertial range or not, where the inertial range is defined by $|ω|\le2Ω$ for the rotation frequency $Ω$. If ${\rm Ek}\gtrsim 10^{-7}$, the viscous dissipation in the core is dominating the thermal contributions in the envelope for $τ_*\gtrsim 1$ day. If ${\rm Ek}\lesssim 10^{-7}$, however, the viscous dissipation is comparable to or smaller than the thermal contributions and the envelope plays an important role to determine the tidal torques. If the forcing is in the inertial range, frequency resonance of the tidal forcing with core inertial modes significantly affects the tidal torques, producing numerous resonance peaks of the torque. Depending on the sign of the torque in the peaks, we suggest that there exist cases in which the resonance with core inertial modes hampers the process of synchronization between the spin and orbital motion of the planets.