论文标题

通过统计CSIT,频谱效率和能源效率的折衷方案

Spectral Efficiency and Energy Efficiency Tradeoff in Massive MIMO Downlink Transmission with Statistical CSIT

论文作者

You, Li, Xiong, Jiayuan, Zappone, Alessio, Wang, Wenjin, Gao, Xiqi

论文摘要

作为未来无线网络的关键技术,大量多输入多输出(MIMO)可以显着提高能效(EE)和光谱效率(SE),并且性能高度取决于可用的通道状态信息(CSI)的程度。尽管大多数现有的关于大型MIMO的作品都集中在发射机(CSIT)瞬时CSI的情况下,但获得精确的瞬时CSIT通常不是一件容易的事。在本文中,我们研究了具有统计CSIT的单细胞大型MIMO下行链路传输中的EE-SE权衡。为此,我们旨在优化能够达到EE-SE平衡的系统资源效率(RE)。我们首先找出了不同用户终端的最佳传输协方差矩阵的特征向量的封闭式解决方案,这表明梁域有利于在大规模MIMO下行链路中执行最佳传输。基于此洞察力,重新优化的预码设计将减少为实值分配问题。利用顺序优化和随机矩阵理论的技术,我们进一步提出了一个低复杂性的次优式两层水结构化功率分配算法。数值结果说明了所提出的统计CSI辅助RE优化方法的有效性和近乎最佳性能。

As a key technology for future wireless networks, massive multiple-input multiple-output (MIMO) can significantly improve the energy efficiency (EE) and spectral efficiency (SE), and the performance is highly dependant on the degree of the available channel state information (CSI). While most existing works on massive MIMO focused on the case where the instantaneous CSI at the transmitter (CSIT) is available, it is usually not an easy task to obtain precise instantaneous CSIT. In this paper, we investigate EE-SE tradeoff in single-cell massive MIMO downlink transmission with statistical CSIT. To this end, we aim to optimize the system resource efficiency (RE), which is capable of striking an EE-SE balance. We first figure out a closed-form solution for the eigenvectors of the optimal transmit covariance matrices of different user terminals, which indicates that beam domain is in favor of performing RE optimal transmission in massive MIMO downlink. Based on this insight, the RE optimization precoding design is reduced to a real-valued power allocation problem. Exploiting the techniques of sequential optimization and random matrix theory, we further propose a low-complexity suboptimal two-layer water-filling-structured power allocation algorithm. Numerical results illustrate the effectiveness and near-optimal performance of the proposed statistical CSI aided RE optimization approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源