论文标题
使用隐式多传感器融合和深度增强学习
Realtime Collision Avoidance for Mobile Robots in Dense Crowds using Implicit Multi-sensor Fusion and Deep Reinforcement Learning
论文作者
论文摘要
我们提出了一种基于学习的新型碰撞算法,Crowdsteer,用于在密集和拥挤的环境中运行的移动机器人。我们的方法是端到端的,并使用多个感知传感器,例如2-D LIDAR以及深度摄像头来感知周围的动态剂并计算无碰撞速度。我们的培训方法基于SIM到现实的范式,并使用对行人和环境的高保真3-D模拟使用近端政策优化(PPO)培训政策。我们表明,我们学到的导航模型可直接转移到以前看不见的虚拟和密集的现实环境中。我们已经将算法与差分驱动机器人相结合,并在狭窄的场景中评估了其性能,例如密集的人群,狭窄的走廊,T-杂题,L界面等。实际上,我们的方法可以执行实时碰撞避免并在此类复杂的情况下产生平稳的轨迹。我们还将性能与基于指标的先前方法进行比较,例如轨迹长度,平均目标时间,成功率和平滑度,并观察到很大的改善。
We present a novel learning-based collision avoidance algorithm, CrowdSteer, for mobile robots operating in dense and crowded environments. Our approach is end-to-end and uses multiple perception sensors such as a 2-D lidar along with a depth camera to sense surrounding dynamic agents and compute collision-free velocities. Our training approach is based on the sim-to-real paradigm and uses high fidelity 3-D simulations of pedestrians and the environment to train a policy using Proximal Policy Optimization (PPO). We show that our learned navigation model is directly transferable to previously unseen virtual and dense real-world environments. We have integrated our algorithm with differential drive robots and evaluated its performance in narrow scenarios such as dense crowds, narrow corridors, T-junctions, L-junctions, etc. In practice, our approach can perform real-time collision avoidance and generate smooth trajectories in such complex scenarios. We also compare the performance with prior methods based on metrics such as trajectory length, mean time to goal, success rate, and smoothness and observe considerable improvement.