论文标题

用数值和图形指南的粗到凝视重定向

Coarse-to-Fine Gaze Redirection with Numerical and Pictorial Guidance

论文作者

Chen, Jingjing, Zhang, Jichao, Sangineto, Enver, Fan, Jiayuan, Chen, Tao, Sebe, Nicu

论文摘要

凝视重定向旨在操纵给定的面部图像的目光相对于所需方向(即参考角度),并且可以应用于许多现实生活中的情况,例如视频会议或拍摄小组照片。但是,以前关于此主题的工作主要存在两个局限性:(1)低质量的图像生成和(2)低重定向精度。在本文中,我们建议通过一种新颖的凝视重定向框架来减轻这些问题,该框架利用了数值和图形方向指导,共同与粗到精细的学习策略共同。具体而言,粗糙分支了解了根据所需的目光扭曲输入图像的空间变换。另一方面,细粒分支由具有条件残留图像学习和多任务鉴别器的发电机网络组成。第二个分支减少了先前扭曲的图像与地面图像之间的差距,并恢复了更细的纹理细节。此外,我们提出了一个数值和图形指南模块(NPG),该模块使用图形的GAZEMAP描述和数值角度作为额外的指南,以进一步提高凝视重定向的精度。基准数据集上的广泛实验表明,就图像质量和重定向精度而言,所提出的方法优于最先进的方法。该代码可在https://github.com/jingjingchen777/cfgr上获得

Gaze redirection aims at manipulating the gaze of a given face image with respect to a desired direction (i.e., a reference angle) and it can be applied to many real life scenarios, such as video-conferencing or taking group photos. However, previous work on this topic mainly suffers of two limitations: (1) Low-quality image generation and (2) Low redirection precision. In this paper, we propose to alleviate these problems by means of a novel gaze redirection framework which exploits both a numerical and a pictorial direction guidance, jointly with a coarse-to-fine learning strategy. Specifically, the coarse branch learns the spatial transformation which warps input image according to desired gaze. On the other hand, the fine-grained branch consists of a generator network with conditional residual image learning and a multi-task discriminator. This second branch reduces the gap between the previously warped image and the ground-truth image and recovers finer texture details. Moreover, we propose a numerical and pictorial guidance module~(NPG) which uses a pictorial gazemap description and numerical angles as an extra guide to further improve the precision of gaze redirection. Extensive experiments on a benchmark dataset show that the proposed method outperforms the state-of-the-art approaches in terms of both image quality and redirection precision. The code is available at https://github.com/jingjingchen777/CFGR

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源