论文标题

相互作用概率预测的方案转移语义图推理

Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware Probabilistic Prediction

论文作者

Hu, Yeping, Zhan, Wei, Tomizuka, Masayoshi

论文摘要

准确地预测交通参与者的可能行为是自动驾驶汽车的重要能力。由于自动驾驶汽车需要在动态变化的环境中导航,因此无论它们在哪里以及遇到什么驾驶环境,它们都将做出准确的预测。已经提出了几种方法来解决不同的交通情况下的预测问题。这些作品通常将代理轨迹与颜色编码或矢量化高清(HD)映射作为输入表示形式相结合,并为行为预测任务编码此信息。但是,并非所有信息都与预测有关,并且在某些情况下,这种无关的信息甚至可能会分散预测。因此,在本文中,我们通过利用语义和领域知识的优势提出了一种针对各种驾驶环境的新型通用表示。使用语义可以使情况以统一的方式建模,并应用域知识将无关的元素滤除到针对车辆的未来行为。然后,我们提出了一个通用的语义行为预测框架,以通过将它们制定为时空语义图和这些图表之间的推理内部关系来有效地利用这些表示。我们从理论上和经验上验证了在高度交互和复杂的场景下验证所提出的框架,这表明我们的方法不仅可以实现最新的性能,而且还可以处理所需的零弹性可传递性。

Accurately predicting the possible behaviors of traffic participants is an essential capability for autonomous vehicles. Since autonomous vehicles need to navigate in dynamically changing environments, they are expected to make accurate predictions regardless of where they are and what driving circumstances they encountered. Several methodologies have been proposed to solve prediction problems under different traffic situations. These works usually combine agent trajectories with either color-coded or vectorized high definition (HD) map as input representations and encode this information for behavior prediction tasks. However, not all the information is relevant in the scene for the forecasting and such irrelevant information may be even distracting to the forecasting in certain situations. Therefore, in this paper, we propose a novel generic representation for various driving environments by taking the advantage of semantics and domain knowledge. Using semantics enables situations to be modeled in a uniform way and applying domain knowledge filters out unrelated elements to target vehicle's future behaviors. We then propose a general semantic behavior prediction framework to effectively utilize these representations by formulating them into spatial-temporal semantic graphs and reasoning internal relations among these graphs. We theoretically and empirically validate the proposed framework under highly interactive and complex scenarios, demonstrating that our method not only achieves state-of-the-art performance, but also processes desirable zero-shot transferability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源