论文标题
定制的数据驱动式封闭,以进行Bifidelity Les-Rans优化
Customized data-driven RANS closures for bi-fidelity LES-RANS optimization
论文作者
论文摘要
多保真优化方法承诺,高保真最佳的成本仅大于低保真优化。由于要求低保真模型良好相关,因此在实践中很少实现这一承诺。在本文中,我们提出了一种有效的双层形状优化方法,用于具有大涡模拟(LES)和雷诺(Reynolds)的Navier-Stokes(RANS)的湍流流体应用,作为在层次统治型krig krig krig krig的替代杂种模型框架中的高基因模型。由于Les-Rans的相关性通常很差,因此我们在设计空间中的一个点上使用完整的LES流场来得出一个定制的las lass闭合模型,该模型在此时重现了LES。这是通过机器学习技术来实现的,特别是稀疏回归,以获得湍流各向异性张量的高校正和作为rans平均流量功能的湍流动能的产生。在整个设计空间中,LES-RANS相关性大大改善。我们证明了我们方法在概念验证形状优化的著名周期性山地案例中的有效性和效率。在这种情况下,标准兰率模型的性能很差,而我们的方法仅用两个LES样品收敛到LES-oftimum。
Multi-fidelity optimization methods promise a high-fidelity optimum at a cost only slightly greater than a low-fidelity optimization. This promise is seldom achieved in practice, due to the requirement that low- and high-fidelity models correlate well. In this article, we propose an efficient bi-fidelity shape optimization method for turbulent fluid-flow applications with Large-Eddy Simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) as the high- and low-fidelity models within a hierarchical-Kriging surrogate modelling framework. Since the LES-RANS correlation is often poor, we use the full LES flow-field at a single point in the design space to derive a custom-tailored RANS closure model that reproduces the LES at that point. This is achieved with machine-learning techniques, specifically sparse regression to obtain high corrections of the turbulence anisotropy tensor and the production of turbulence kinetic energy as functions of the RANS mean-flow. The LES-RANS correlation is dramatically improved throughout the design-space. We demonstrate the effectiveness and efficiency of our method in a proof-of-concept shape optimization of the well-known periodic-hill case. Standard RANS models perform poorly in this case, whereas our method converges to the LES-optimum with only two LES samples.