论文标题
涡流和涡流晶格中的集体激发
Collective excitations in vortices and vortex lattices
论文作者
论文摘要
介观长度尺度上的紧急晶格引起了一些最近的情况,例如在天空的晶体排列中。确定他们的集体激发是一项具有挑战性的任务,因为单位单元格很大并且可以包含复杂的纹理。我们在最古老的已知介质晶格,即超氟中的涡旋晶格中解决了这个问题。我们表明,紧密的绑定方法可以成功地描述集体模式。我们从二维系统中的一个孤立涡流开始。使用合适的固定机制,低能激发采用局部配对波动的形式。它们可以被视为像波一样的干扰,在方位角方向沿涡旋中心繁殖。特别是,最低的能量激发是陀螺和呼吸模式。前者对应于涡流的眼睛的圆形运动,而后者则表示更敏捷和较宽的涡旋曲线之间的振荡。这些模式是原子轨道的“骨气”类似物,其涡度曲线起着核能的作用。移动到具有良好分离涡旋的稀疏涡旋晶格,单涡流激发为查找正常模式提供了方便的基础。在这种情况下,我们得出了Bloch定理的类似物,揭示了轨道场引起的非平凡阶段贡献。我们设置了一个紧密的装订处方,并使用它来明确确定有关方形涡旋晶格的激发的带结构。我们的结果可以在具有合成磁场的超速原子气体中进行测试。
Emergent lattices at mesoscopic length scales have evoked interest in several recent contexts, e.g., in crystalline arrangements of skyrmions. It is a challenging task to determine their collective excitations as the unit cells are large and can contain complex textures. We address this issue in the oldest known example of an emergent mesoscopic lattice, the vortex lattice in a superfluid. We show that a tight binding approach can successfully describe collective modes. We begin with a single isolated vortex in a two dimensional system. With suitable pinning mechanims, the low energy excitations take the form of localized pairing fluctuations. They can be viewed as wave-like disturbances that propagate around the vortex centre, in the azimuthal direction. In particular, the lowest energy excitations are gyrotropic and breathing modes. The former corresponds to circular motion of the eye of the vortex, while the latter represents an oscillation between sharper and broader vortex profiles. These modes are `bosonic' analogues of atomic orbitals with the vortex profile playing the role of the nuclear potential. Moving to a sparse vortex lattice with well separated vortices, the single-vortex excitations provide a convenient basis for finding normal modes. We derive an analogue of Bloch's theorem in this context, revealing a non-trivial phase contribution arising from the orbital field. We set up a tight binding prescription and use it to explicitly determine the band structure of excitations about a square vortex lattice. Our results can be tested in ultracold atomic gases with synthetic magnetic fields.