论文标题
带有或不带有$ \ mathbb z_2 $对称破坏的耗散时间晶体
A dissipative time crystal with or without $\mathbb Z_2$ symmetry breaking
论文作者
论文摘要
我们研究了由两个相互作用驱动的骨值模式组成的新兴半经典时间晶体。该系统具有离散的$ \ Mathbb Z_2 $空间对称性,根据驱动器的强度,可以在时间晶状体阶段中损坏,也可以破坏。合并了精确的半古老平均场分析,量子状态中的数值模拟以及对Liouvillian的光谱分析,以显示时间晶体的出现,并证明振荡周期抗量子波动的稳健性。
We study an emergent semiclassical time crystal composed of two interacting driven-dissipative bosonic modes. The system has a discrete $\mathbb Z_2$ spatial symmetry which, depending on the strength of the drive, can be broken in the time-crystalline phase or it cannot. An exact semiclassical mean-field analysis, numerical simulations in the quantum regime, and the spectral analysis of the Liouvillian are combined to show the emergence of the time crystal and to prove the robustness of the oscillation period against quantum fluctuations.