论文标题
短寿命核的磁矩具有每百万个精度:朝着$β$检测到的NMR在物理,化学和生物学中的新颖应用
Magnetic moments of short-lived nuclei with part-per-million accuracy: Towards novel applications of $β$-detected NMR in physics, chemistry and biology
论文作者
论文摘要
我们首次确定了一个短寿命核的磁偶极力矩,其精度为每百万(ppm)。为了实现这两个数量级的改善,我们在Isolde/Cern的$β$检测到的核磁共振($β$ -NMR)设置中实施了许多创新。使用液体样品作为宿主,我们获得了狭窄的,子kHz线宽的共鸣,而同时置入元素$^1 $ h NMR测量使我们能够校准并将磁场稳定在PPM精度上,从而消除了对$β$ -NMR参考测量值的需求。此外,我们使用NMR屏蔽常数的从头算计算来提高参考磁矩的准确性,从而消除了较大的系统误差。我们证明了这种联合方法与1.1 S半寿命放射性核$^{26} $ Na的潜力,这与生化研究有关。我们的技术很容易扩展到其他同位素链,为许多短寿命的核提供准确的磁矩。此外,我们讨论了我们的方法如何为超敏感的$β$ -NMR在物理,化学和生物学方面的广泛应用开辟道路。
We determine for the first time the magnetic dipole moment of a short-lived nucleus with part-per-million (ppm) accuracy. To achieve this two orders of magnitude improvement over previous studies, we implement a number of innovations into our $β$-detected Nuclear Magnetic Resonance ($β$-NMR) setup at ISOLDE/CERN. Using liquid samples as hosts we obtain narrow, sub-kHz linewidth, resonances, while a simultaneous in-situ $^1$H NMR measurement allows us to calibrate and stabilize the magnetic field to ppm precision, thus eliminating the need for additional $β$-NMR reference measurements. Furthermore, we use ab initio calculations of NMR shielding constants to improve the accuracy of the reference magnetic moment, thus removing a large systematic error. We demonstrate the potential of this combined approach with the 1.1 s half-life radioactive nucleus $^{26}$Na, which is relevant for biochemical studies. Our technique can be readily extended to other isotopic chains, providing accurate magnetic moments for many short-lived nuclei. Furthermore, we discuss how our approach can open the path towards a wide range of applications of the ultra-sensitive $β$-NMR in physics, chemistry, and biology.