论文标题

短寿命核的磁矩具有每百万个精度:朝着$β$检测到的NMR在物理,化学和生物学中的新颖应用

Magnetic moments of short-lived nuclei with part-per-million accuracy: Towards novel applications of $β$-detected NMR in physics, chemistry and biology

论文作者

Harding, R. D., Pallada, S., Croese, J., Antušek, A. A., Baranowski, M., Bissell, M. L., Cerato, L., Dziubinska-Kühn, Gins, W., Gustafsson, F. P., Javaji, A., Jolivet, R. B., Kanellakopoulos, A., Karg, B., Kocman, M. Kempka V., Kozak, M., Kulesz, K., Flores, M. Madurga, Neyens, G., Plavec, R. Pietrzyk J., Pomorski, M., Skrzypczak, A., Wagenknecht, P., Wienholtz, F., Xu, J. Wolak Z., Zakoucky, D., Kowalska, M.

论文摘要

我们首次确定了一个短寿命核的磁偶极力矩,其精度为每百万(ppm)。为了实现这两个数量级的改善,我们在Isolde/Cern的$β$检测到的核磁共振($β$ -NMR)设置中实施了许多创新。使用液体样品作为宿主,我们获得了狭窄的,子kHz线宽的共鸣,而同时置入元素$^1 $ h NMR测量使我们能够校准并将磁场稳定在PPM精度上,从而消除了对$β$ -NMR参考测量值的需求。此外,我们使用NMR屏蔽常数的从头算计算来提高参考磁矩的准确性,从而消除了较大的系统误差。我们证明了这种联合方法与1.1 S半寿命放射性核$^{26} $ Na的潜力,这与生化研究有关。我们的技术很容易扩展到其他同位素链,为许多短寿命的核提供准确的磁矩。此外,我们讨论了我们的方法如何为超敏感的$β$ -NMR在物理,化学和生物学方面的广泛应用开辟道路。

We determine for the first time the magnetic dipole moment of a short-lived nucleus with part-per-million (ppm) accuracy. To achieve this two orders of magnitude improvement over previous studies, we implement a number of innovations into our $β$-detected Nuclear Magnetic Resonance ($β$-NMR) setup at ISOLDE/CERN. Using liquid samples as hosts we obtain narrow, sub-kHz linewidth, resonances, while a simultaneous in-situ $^1$H NMR measurement allows us to calibrate and stabilize the magnetic field to ppm precision, thus eliminating the need for additional $β$-NMR reference measurements. Furthermore, we use ab initio calculations of NMR shielding constants to improve the accuracy of the reference magnetic moment, thus removing a large systematic error. We demonstrate the potential of this combined approach with the 1.1 s half-life radioactive nucleus $^{26}$Na, which is relevant for biochemical studies. Our technique can be readily extended to other isotopic chains, providing accurate magnetic moments for many short-lived nuclei. Furthermore, we discuss how our approach can open the path towards a wide range of applications of the ultra-sensitive $β$-NMR in physics, chemistry, and biology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源