论文标题
相互依存网络中级联故障的贪婪控制
Greedy control of cascading failures in interdependent networks
论文作者
论文摘要
复杂的系统在控制方面具有挑战性,因为该系统以非线性方式响应控制器,通常结合了反馈机制。系统的相互依赖性带来了其他困难,因为跨系统连接使恶意活动能够在层之间扩散,从而增加了系统性的风险。在本文中,我们探讨了在相互依存网络系统中最佳控制级联故障的条件。具体而言,我们研究了包含控制机制的Bak-Tang-Wiesenfeld沙板模型,该模型会影响各个层中发生的级联反应频率。这种修饰使我们能够探索临界状态附近的类似沙杆状动力学,超临界区域对应于频繁的小型雪崩特征的不经常的大型级联反应和亚临界区。网络之间的拓扑结合引入了各个层中采用的控制设置的依赖性,从而导致给定层的控制策略受到其他连接网络中选择的影响。我们发现,在超临界方案中运行的层的最佳控制策略应耦合到在亚临界区域中运行的层,因为这种状况对应于降低造成的雪崩的概率。但是,这种情况描述了寄生关系,其中只有一层受益。第二个最佳配置是一种共同的配置,其中两层都采用相同的控制策略。这项工作表明,相互依存网络系统中的控制协议需要考虑系统的高阶组织,并且不能独立设计,仅对其各个层最大化收益。
Complex systems are challenging to control because the system responds to the controller in a nonlinear fashion, often incorporating feedback mechanisms. Interdependence of systems poses additional difficulties, as cross-system connections enable malicious activity to spread between layers, increasing systemic risk. In this paper we explore the conditions for an optimal control of cascading failures in a system of interdependent networks. Specifically, we study the Bak-Tang-Wiesenfeld sandpile model incorporating a control mechanism, which affects the frequency of cascades occurring in individual layers. This modification allows us to explore sandpile-like dynamics near the critical state, with supercritical region corresponding to infrequent large cascades and subcritical zone being characterized by frequent small avalanches. Topological coupling between networks introduces dependence of control settings adopted in respective layers, causing the control strategy of a given layer to be influenced by choices made in other connected networks. We find that the optimal control strategy for a layer operating in a supercritical regime is to be coupled to a layer operating in a subcritical zone, since such condition corresponds to reduced probability of inflicted avalanches. However this condition describes a parasitic relation, in which only one layer benefits. Second optimal configuration is a mutualistic one, where both layers adopt the same control strategy. This work demonstrates that control protocols in systems of interdependent networks need to take into account higher-order organization of the system and cannot be designed independently, maximizing benefits only for their individual layers.