论文标题

新的高质量的强镜头候选者在千学位调查中具有深度学习

New high-quality strong lens candidates with deep learning in the Kilo Degree Survey

论文作者

Li, R., Napolitano, N. R., Tortora, C., Spiniello, C., Koopmans, L. V. E., Huang, Z., Roy, N., Vernardos, G., Chatterjee, S., Giblin, B., Getman, F., Radovich, M., Covone, G., Kuijken, K.

论文摘要

我们报告了使用机器学习在Kilo学位调查数据4版中发现的新的高质量星系尺度的强镜头候选者。我们已经开发了一个新的卷积神经网络(CNN)分类器来搜索引力弧,按照\ cite {2019mnras.484.3879p}的处方,仅使用$ r- $ band images。我们已将CNN应用于两个“预测样本”:一个发光的红色星系(LRG)和一个“明亮的星系”(BG)样品($ r <21 $)。我们已经发现了286个新的高概率候选者,LRG样本中的133个和153个来自BG样品。然后,我们根据将CNN的可能性与视觉检查产生的镜头和人类得分相结合的值对这些候选者进行了排名(p值),我们在这里提出了最高的82个排名第82个候选人,其p值$ \ ge ge 0.5 $。所有这些高质量的候选者在中央红色叛逃器周围具有明显的弧形或点状特征。此外,我们定义了最佳的26个对象,所有这些对象都具有分数p值$ \ ge 0.7 $作为候选人的“黄金样本”。预计该样本将包含很少的假阳性,因此适用于后续观察。新的晶状体候选者部分来自此处对先前分析采用的更扩展的足迹,部分来自较大的预测样本(还包括BG样本)。这些结果表明,机器学习工具非常有前途,可以在大型调查中找到强镜,并通过扩大超出LRGS标准假设的预测样本来找到更多的候选者。将来,我们计划将我们的CNN应用于下一代调查的数据,例如大型概要调查望远镜,欧几里得和中国空间站光学调查。

We report new high-quality galaxy scale strong lens candidates found in the Kilo Degree Survey data release 4 using Machine Learning. We have developed a new Convolutional Neural Network (CNN) classifier to search for gravitational arcs, following the prescription by \cite{2019MNRAS.484.3879P} and using only $r-$band images. We have applied the CNN to two "predictive samples": a Luminous red galaxy (LRG) and a "bright galaxy" (BG) sample ($r<21$). We have found 286 new high probability candidates, 133 from the LRG sample and 153 from the BG sample. We have then ranked these candidates based on a value that combines the CNN likelihood to be a lens and the human score resulting from visual inspection (P-value) and we present here the highest 82 ranked candidates with P-values $\ge 0.5$. All these high-quality candidates have obvious arc or point-like features around the central red defector. Moreover, we define the best 26 objects, all with scores P-values $\ge 0.7$ as a "golden sample" of candidates. This sample is expected to contain very few false positives and thus it is suitable for follow-up observations. The new lens candidates come partially from the the more extended footprint adopted here with respect to the previous analyses, partially from a larger predictive sample (also including the BG sample). These results show that machine learning tools are very promising to find strong lenses in large surveys and more candidates that can be found by enlarging the predictive samples beyond the standard assumption of LRGs. In the future, we plan to apply our CNN to the data from next-generation surveys such as the Large Synoptic Survey Telescope, Euclid, and the Chinese Space Station Optical Survey.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源