论文标题

弗拉索夫 - 波森系统的保守性不连续的Galerkin/Hermite光谱法

Conservative discontinuous Galerkin/Hermite Spectral Method for the Vlasov-Poisson System

论文作者

Filbet, Francis, Xiong, Tao

论文摘要

我们建议使用速度变量中使用hermite多项式的弗拉索夫 - 波森系统作为双曲线系统,提出了一类保守的不连续的Galerkin方法。这些方案被设计为具有质量可证明的质量和可能的总能量的可证明的保守性的系统性准确。通常,在模拟Vlasov-Poisson系统的其他数值方法框架中,很难实现此类属性。拟议的方案对Vlasov和Poisson方程都采用了不连续的Galerkin离散化,从而对分布函数和电场进行了一致的描述。进行数值模拟以验证准确性和保护性能的顺序。

We propose a class of conservative discontinuous Galerkin methods for the Vlasov-Poisson system written as a hyperbolic system using Hermite polynomials in the velocity variable. These schemes are designed to be systematically as accurate as one wants with provable conservation of mass and possibly total energy. Such properties in general are hard to achieve within other numerical method frameworks for simulating the Vlasov-Poisson system. The proposed scheme employs discontinuous Galerkin discretization for both the Vlasov and the Poisson equations, resulting in a consistent description of the distribution function and electric field. Numerical simulations are performed to verify the order of accuracy and conservation properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源