论文标题

从真实图像中提取快速内侧轴的外观冲击语法

Appearance Shock Grammar for Fast Medial Axis Extraction from Real Images

论文作者

Camaro, Charles-Olivier Dufresne, Rezanejad, Morteza, Tsogkas, Stavros, Siddiqi, Kaleem, Dickinson, Sven

论文摘要

我们将冲击图理论中的思想与更近最新的基于外观的方法相结合,从复杂的自然场景中提取内侧轴,从效率和性能方面改善了当前最佳无监督方法。我们做出以下特定贡献:i)通过使用局部,基于外观的标准概括冲击类型的定义,将冲击图表示为真实图像的域; ii)然后,我们使用冲击语法的规则来指导我们寻找内侧点,与其他方法相比,详尽地降低了运行时间,这些方法在输入图像中详尽地考虑了所有点; iii)我们消除了对典型的后处理步骤的需求iv)最后,我们对先前工作中使用的评估方案提出了一些基本问题,并提出了一种更合适的选择,以评估内侧轴从场景中提取的性能。我们对BMAX500和SK-LARGE数据集的实验证明了我们方法的有效性。我们的表现要胜过当前的最先进,尤其是在高精度制度中表现出色,同时运行的速度更快,不需要后处理。

We combine ideas from shock graph theory with more recent appearance-based methods for medial axis extraction from complex natural scenes, improving upon the present best unsupervised method, in terms of efficiency and performance. We make the following specific contributions: i) we extend the shock graph representation to the domain of real images, by generalizing the shock type definitions using local, appearance-based criteria; ii) we then use the rules of a Shock Grammar to guide our search for medial points, drastically reducing run time when compared to other methods, which exhaustively consider all points in the input image;iii) we remove the need for typical post-processing steps including thinning, non-maximum suppression, and grouping, by adhering to the Shock Grammar rules while deriving the medial axis solution; iv) finally, we raise some fundamental concerns with the evaluation scheme used in previous work and propose a more appropriate alternative for assessing the performance of medial axis extraction from scenes. Our experiments on the BMAX500 and SK-LARGE datasets demonstrate the effectiveness of our approach. We outperform the present state-of-the-art, excelling particularly in the high-precision regime, while running an order of magnitude faster and requiring no post-processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源