论文标题
管理Airbnb搜索的多样性
Managing Diversity in Airbnb Search
论文作者
论文摘要
搜索系统中长期存在的问题之一是多样性在结果中的作用。从产品的角度来看,显示出不同的结果为用户提供了更多的选择,并应带来改善的体验。但是,这种直觉与常见的机器学习方法进行排名不一致,该方法直接优化了每个项目的相关性,而无需整体视图结果集。在本文中,我们描述了我们解决Airbnb搜索多样性问题的旅程,从基于启发式的方法开始,并以一种新颖的深度学习解决方案结束,该解决方案通过利用复发性神经网络(RNNS)来产生整个查询环境的嵌入。我们希望我们所学到的教训对他人有用,并激励在这一领域进行进一步的研究。
One of the long-standing questions in search systems is the role of diversity in results. From a product perspective, showing diverse results provides the user with more choice and should lead to an improved experience. However, this intuition is at odds with common machine learning approaches to ranking which directly optimize the relevance of each individual item without a holistic view of the result set. In this paper, we describe our journey in tackling the problem of diversity for Airbnb search, starting from heuristic based approaches and concluding with a novel deep learning solution that produces an embedding of the entire query context by leveraging Recurrent Neural Networks (RNNs). We hope our lessons learned will prove useful to others and motivate further research in this area.