论文标题
具有指数增长的关键分数椭圆方程,没有Ambrosetti-Rabinowitz型条件
Critical fractional elliptic equations with exponential growth without Ambrosetti-Rabinowitz type condition
论文作者
论文摘要
在本文中,我们使用变异方法与Moser-trudinger不平等相结合,对于一类具有指数级生长的关键分数椭圆方程的弱解和多样性,而没有Ambrosetti-Rabinowitz-type条件。非线性与分数操作员光谱的相互作用将用于研究溶液的存在和多样性。主要技术结果证明,对于具有指数增长的非线性的$ w^{s,p} _0 $,$ c_ {s}^0(\overlineΩ)$中的本地最小值也是局部最小值。
In this paper we establish, using variational methods combined with the Moser-Trudinger inequality, existence and multiplicity of weak solutions for a class of critical fractional elliptic equations with exponential growth without a Ambrosetti-Rabinowitz-type condition. The interaction of the nonlinearities with the spectrum of the fractional operator will used to study the existence and multiplicity of solutions. The main technical result proves that a local minimum in $C_{s}^0(\overlineΩ)$ is also a local minimum in $W^{s,p}_0$ for nonlinearities with exponential growth.