论文标题

基于梯度的培训和对径向基函数网络的修剪,并在材料物理中应用

Gradient-Based Training and Pruning of Radial Basis Function Networks with an Application in Materials Physics

论文作者

Määttä, Jussi, Bazaliy, Viacheslav, Kimari, Jyri, Djurabekova, Flyura, Nordlund, Kai, Roos, Teemu

论文摘要

许多应用程序,尤其是在物理和其他科学中,要求易于解释且健壮的机器学习技术。我们提出了一种完全基于梯度的技术,用于培训具有高效且可扩展的开源实现的径向基函数网络。我们得出了新颖的封闭形式优化标准,用于修剪连续数据和二进制数据的模型,这些数据在充满挑战的现实世界物理物理问题中出现。优化修剪模型以根据有关数据分布的知情假设提供较大模型的紧凑和可解释的版本。修剪模型的可视化提供了对确定原子级迁移过程中固体迁移过程的原子构构的见解;这些结果可能会为未来的研究提供有关设计更合适的描述符的研究,以与机器学习算法一起使用。

Many applications, especially in physics and other sciences, call for easily interpretable and robust machine learning techniques. We propose a fully gradient-based technique for training radial basis function networks with an efficient and scalable open-source implementation. We derive novel closed-form optimization criteria for pruning the models for continuous as well as binary data which arise in a challenging real-world material physics problem. The pruned models are optimized to provide compact and interpretable versions of larger models based on informed assumptions about the data distribution. Visualizations of the pruned models provide insight into the atomic configurations that determine atom-level migration processes in solid matter; these results may inform future research on designing more suitable descriptors for use with machine learning algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源