论文标题
地平线坐标中扰动黑洞的分析和数值处理
Analytical and numerical treatment of perturbed black holes in horizon-penetrating coordinates
论文作者
论文摘要
黑洞与线性情况的非线性扰动的偏差在具有较大信噪比的环down信号的背景下很重要。为了促进两者之间的比较,我们得出了在数值工作中可以采用的坐标中线性扰动理论的几个结果。具体而言,我们的结果是在通过一般高度函数调整的Kerr-Schild坐标中得出的。在本文的第一部分中,我们解决了问题:对于无质量标量场的初始配置,激发的准准模式(QNM)的幅度是什么,对于事件范围外以外的任何观察者,以及由此产生的尾巴贡献是什么?这是通过使用满足适当边界条件的Contruent Heun方程的精确解决方案来为问题构造完整的绿色功能来完成的。在本文的第二部分中,我们将新的开发项目详细介绍了我们的伪数值相对性代码bamps来处理标量字段。在线性方案中,我们精确地采用了通过我们以前的分析处理的Kerr-Schild坐标。特别是,我们进化了纯QNM类型的初始数据以及其他几种类型的初始数据,并报告信号中存在泛音模式。
The deviations of non-linear perturbations of black holes from the linear case are important in the context of ringdown signals with large signal-to-noise ratio. To facilitate a comparison between the two we derive several results of linear perturbation theory in coordinates which may be adopted in numerical work. Specifically, our results are derived in Kerr-Schild coordinates adjusted by a general height function. In the first part of the paper we address the questions: for an initial configuration of a massless scalar field, what is the amplitude of the excited quasinormal mode (QNM) for any observer outside outside the event horizon, and furthermore what is the resulting tail contribution? This is done by constructing the full Green's function for the problem with exact solutions of the confluent Heun equation satisfying appropriate boundary conditions. In the second part of the paper, we detail new developments to our pseudospectral numerical relativity code bamps to handle scalar fields. In the linear regime we employ precisely the Kerr-Schild coordinates treated by our previous analysis. In particular, we evolve pure QNM type initial data along with several other types of initial data and report on the presence of overtone modes in the signal.