论文标题
在部分离子,等温的,分层的大气中的两流体冲击的模式转换
Mode conversion of two-fluid shocks in a partially-ionised, isothermal, stratified atmosphere
论文作者
论文摘要
下太阳气氛的血浆主要由中性颗粒组成,而上太阳大气中的高度是离子颗粒和电子的。因此,在太阳大气中向上传播的冲击会经历一个过渡,而显性流体是中性或电离的。向上传播的冲击也经过了声音和alfvén速度相等的点。在这一点上,声学冲击的能量可以分为快速和缓慢的组件。在两种模式之间分布的能量如何取决于磁场的角度。研究了重力分层气氛中中性和离子化物质的分离。两流体对电击后转换后冲击结构和摩擦加热结构的作用是针对不同水平的碰撞耦合的。使用(p \下划线{i} p)的波浪代码在等温,部分离子的大气中进行冲击,进行两流体数值模拟。碰撞系数变化以研究血浆和中性物种弱,强和有限耦合的机制。由中性和离子化物种托管的压缩波的传播速度变化,因此,由于血浆试图比中性物质更快地传播两个物种之间的速度漂移。对于快速模式冲击,这是最极端的。我们发现,碰撞系数会大大改变系统中存在的特征,特别是模式转换高度,类型的冲击类型以及由两流体效应创建的有限冲击宽度。在有限耦合的状态下,快速模式冲击宽度可能会超过压力尺度的高度,从而导致在较低的太阳大气中可观察到的两流体效应的新潜在。
The plasma of the lower solar atmosphere consists of mostly neutral particles, whereas the upper solar atmosphere is mostly ionised particles and electrons. A shock that propagates upwards in the solar atmosphere therefore undergoes a transition where the dominant fluid is either neutral or ionised. An upwards propagating shock also passes a point where the sound and Alfvén speed are equal. At this point the energy of the acoustic shock can separated into fast and slow components. How the energy is distributed between the two modes depends on the angle of magnetic field. The separation of neutral and ionised species in a gravitationally stratified atmosphere is investigated. The role of two-fluid effects on the structure of the shocks post-mode-conversion and the frictional heating is quantified for different levels of collisional coupling. Two-fluid numerical simulations are performed using the (P\underline{I}P) code of a wave steepening into a shock in an isothermal, partially-ionised atmosphere. The collisional coefficient is varied to investigate the regimes where the plasma and neutral species are weakly, strongly and finitely coupled. The propagation speeds of the compressional waves hosted by neutral and ionised species vary, therefore velocity drift between the two species is produced as the plasma attempts to propagate faster than the neutrals. This is most extreme for a fast-mode shock. We find that the collisional coefficient drastically changes the features present in the system, specifically the mode conversion height, type of shocks present, and the finite shock widths created by the two-fluid effects. In the finitely-coupled regime fast-mode shock widths can exceed the pressure scale height leading to a new potential observable of two-fluid effects in the lower solar atmosphere.