论文标题
Carnot组的内在图和CoArea公式的面积
Area of intrinsic graphs and coarea formula in Carnot Groups
论文作者
论文摘要
我们考虑具有内在$ c^1 $ juropartity($ c^1_h $)的子帝国carnot群的子手机。我们的第一个主要结果是$ C^1_h $内部图的区域公式;作为应用程序,我们推断出可调集的Hausdorff度量的密度属性。我们的第二个主要结果是将$ c^1_h $ submanifolds切成$ C^1_h $函数的级别集的CoArea公式。
We consider submanifolds of sub-Riemannian Carnot groups with intrinsic $C^1$ regularity ($C^1_H$). Our first main result is an area formula for $C^1_H$ intrinsic graphs; as an application, we deduce density properties for Hausdorff measures on rectifiable sets. Our second main result is a coarea formula for slicing $C^1_H$ submanifolds into level sets of a $C^1_H$ function.