论文标题

在几秒钟内强大的3D自画像

Robust 3D Self-portraits in Seconds

论文作者

Li, Zhe, Yu, Tao, Pan, Chuanyu, Zheng, Zerong, Liu, Yebin

论文摘要

在本文中,我们提出了一种使用单个RGBD摄像头的鲁棒3D自画像的有效方法。受益于提议的插图和轻巧的捆绑调整算法,我们的方法可以在几秒钟内生成详细的3D自画像,并显示出处理穿着极其松散衣服的受试者的能力。为了实现高效且稳健的重建,我们提出了构想,它结合了基于学习的3D恢复与体积非刚性融合,以产生对受试者的准确稀疏部分扫描。此外,提出了一种非刚性体积变形方法,以不断地完善先验的学术形状。最后,提出了一种轻巧的捆绑捆绑调整算法,以确保所有部分扫描不仅可以彼此“循环”,而且还可以与所选的实时关键观测值保持一致。结果和实验表明,与最先进的方法相比,所提出的方法可实现更强大,更有效的3D自画像。

In this paper, we propose an efficient method for robust 3D self-portraits using a single RGBD camera. Benefiting from the proposed PIFusion and lightweight bundle adjustment algorithm, our method can generate detailed 3D self-portraits in seconds and shows the ability to handle subjects wearing extremely loose clothes. To achieve highly efficient and robust reconstruction, we propose PIFusion, which combines learning-based 3D recovery with volumetric non-rigid fusion to generate accurate sparse partial scans of the subject. Moreover, a non-rigid volumetric deformation method is proposed to continuously refine the learned shape prior. Finally, a lightweight bundle adjustment algorithm is proposed to guarantee that all the partial scans can not only "loop" with each other but also remain consistent with the selected live key observations. The results and experiments show that the proposed method achieves more robust and efficient 3D self-portraits compared with state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源