论文标题
多个变量的换向升降机
Commutant lifting in several variables
论文作者
论文摘要
在本文中,我们研究了换向的提升,更一般地交织起来,用于在$ \ mathbb {c}^n $中的两个域上的不同再现希尔伯特空间,即单位球和单位polydisc。我们认为的繁殖内核希尔伯特空间主要是加权的伯格曼空间。我们的换向提升结果本质上是明确的,这就是为什么即使在一个变量$(n = 1)$设置中,这些结果也是新的。
In this article we study commutant lifting, more generally intertwining lifting, for different reproducing kernel Hilbert spaces over two domains in $\mathbb{C}^n$, namely the unit ball and the unit polydisc. The reproducing kernel Hilbert spaces we consider are mainly weighted Bergman spaces. Our commutant lifting results are explicit in nature and that is why these results are new even in one variable $(n=1)$ set up.