论文标题

在$ \ mathbb {c} \ text {p}^d $的$ \ mathbb {c}

On periodic points of Hamiltonian diffeomorphisms of $\mathbb{C}\text{P}^d$ via generating functions

论文作者

Allais, Simon

论文摘要

受到赠送和théret的技术的启发,我们提供了一个证明Ginzburg-Gürel的最新结果的证据,该功能涉及$ \ Mathbb {c} \ text {p text {p}^d $的hamiltonian diffeemorlisms的定期点。例如,我们能够证明伪旋转的固定点被隔离为不变集,或者具有双曲固定点具有无限多个周期性点的汉密尔顿差异性。

Inspired by the techniques of Givental and Théret, we provide a proof with generating functions of a recent result of Ginzburg-Gürel concerning the periodic points of Hamiltonian diffeomorphisms of $\mathbb{C}\text{P}^d$. For instance, we are able to prove that fixed points of pseudo-rotations are isolated as invariant sets or that a Hamiltonian diffeomorphism with a hyperbolic fixed point has infinitely many periodic points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源