论文标题
使用随机森林算法进行无监督和监督的学习,用于交通场景和分类
Unsupervised and Supervised Learning with the Random Forest Algorithm for Traffic Scenario Clustering and Classification
论文作者
论文摘要
本文的目的是提供一种方法,该方法能够自动找到流量方案的类别。该体系结构由三个主要组成部分组成:微观流量模拟,一种聚类技术和用于操作阶段的分类技术。开发的仿真工具分别模拟每辆车,同时保持彼此之间的依赖关系。聚类方法由一种修改的无监督随机森林算法组成,以找到所有情况之间的数据自适应相似性度量。为此,提出了一种基于随机森林算法的相似性的新技术,这是一部分。在聚类的第二部分中,相似之处用于定义一组集群。在第三部分中,使用定义的群集进行操作阶段训练随机的森林分类器。描述了一种阈值技术,以确保课堂分配的一定置信度。该方法适用于公路方案。结果表明,所提出的方法是自动对交通情况进行分类的绝佳方法,这与测试自动驾驶汽车功能特别相关。
The goal of this paper is to provide a method, which is able to find categories of traffic scenarios automatically. The architecture consists of three main components: A microscopic traffic simulation, a clustering technique and a classification technique for the operational phase. The developed simulation tool models each vehicle separately, while maintaining the dependencies between each other. The clustering approach consists of a modified unsupervised Random Forest algorithm to find a data adaptive similarity measure between all scenarios. As part of this, the path proximity, a novel technique to determine a similarity based on the Random Forest algorithm is presented. In the second part of the clustering, the similarities are used to define a set of clusters. In the third part, a Random Forest classifier is trained using the defined clusters for the operational phase. A thresholding technique is described to ensure a certain confidence level for the class assignment. The method is applied for highway scenarios. The results show that the proposed method is an excellent approach to automatically categorize traffic scenarios, which is particularly relevant for testing autonomous vehicle functionality.