论文标题
大颜色$ r $ -matrix用于结的补充和奇怪的身份
Large color $R$-matrix for knot complements and strange identities
论文作者
论文摘要
Gukov-Manolescu系列由$ f_k $表示,是结的猜想不变,从某种意义上说,在分析上可以继续进行彩色的琼斯多项式。在本文中,我们使用大颜色$ r $ -matrix来研究一些简单链接的$ f_k $。具体来说,我们给出了$ f_k $的$ f_k $,用于正面编织结,并计算各种结和链接的$ f_k $。作为推论,我们为积极的辫子结出了一类“奇怪的身份”。
The Gukov-Manolescu series, denoted by $F_K$, is a conjectural invariant of knot complements that, in a sense, analytically continues the colored Jones polynomials. In this paper we use the large color $R$-matrix to study $F_K$ for some simple links. Specifically, we give a definition of $F_K$ for positive braid knots, and compute $F_K$ for various knots and links. As a corollary, we present a class of `strange identities' for positive braid knots.