论文标题

使用半监督的学习中的密集有雾场景的光流

Optical Flow in Dense Foggy Scenes using Semi-Supervised Learning

论文作者

Yan, Wending, Sharma, Aashish, Tan, Robby T.

论文摘要

在密集的有雾的场景中,现有的光流方法是错误的。这是由于致密雾颗粒引起的降解,这些雾气破坏了光流基本假设,例如亮度和梯度恒定。为了解决这个问题,我们介绍了一种半监督的深度学习技术,该技术在训练过程中采用了无光流基地真相的真实雾图像。我们的网络在一个框架中集成了域转换和光流网络。最初,鉴于一对合成的雾图像,其相应的清洁图像和光流动地面真相,在一个训练批次中,我们以监督的方式训练我们的网络。随后,给定一对真实的雾图像和一对彼此不对应的干净图像(未配对),在下一个训练批次中,我们以无监督的方式训练我们的网络。然后,我们在迭代中交替进行合成和真实数据的培训。我们使用没有基础真相的真实数据,因为在这种情况下具有基础真相是棘手的,并且也避免了合成数据训练的过度拟合问题,在这种情况下,关于合成数据的知识不能推广到真实的数据测试。与网络架构设计一起,我们提出了一种新的培训策略,该策略结合了监督的合成数据培训和无监督的Real-DATA培训。实验结果表明,我们的方法是有效的,并且在估计密集有雾场中的光流方面的最新方法胜过最先进的方法。

In dense foggy scenes, existing optical flow methods are erroneous. This is due to the degradation caused by dense fog particles that break the optical flow basic assumptions such as brightness and gradient constancy. To address the problem, we introduce a semi-supervised deep learning technique that employs real fog images without optical flow ground-truths in the training process. Our network integrates the domain transformation and optical flow networks in one framework. Initially, given a pair of synthetic fog images, its corresponding clean images and optical flow ground-truths, in one training batch we train our network in a supervised manner. Subsequently, given a pair of real fog images and a pair of clean images that are not corresponding to each other (unpaired), in the next training batch, we train our network in an unsupervised manner. We then alternate the training of synthetic and real data iteratively. We use real data without ground-truths, since to have ground-truths in such conditions is intractable, and also to avoid the overfitting problem of synthetic data training, where the knowledge learned on synthetic data cannot be generalized to real data testing. Together with the network architecture design, we propose a new training strategy that combines supervised synthetic-data training and unsupervised real-data training. Experimental results show that our method is effective and outperforms the state-of-the-art methods in estimating optical flow in dense foggy scenes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源