论文标题
子/超声体矩阵,并应用了对签名网络的双分部分跟踪控制的应用
Sub/super-stochastic matrix with applications to bipartite tracking control over signed networks
论文作者
论文摘要
在这项贡献中,使用签名网络的二分化跟踪问题(MASS)的两部分跟踪问题应用于签名的网络,使用重量和负重的边缘分别用来描述代理之间的合作和竞争。为了进行研究的完整性,总体内容分为两个部分。在第一部分中,我们分别研究了在异步相互作用的存在下,两分位跟踪的动力学。异步相互作用意味着每个代理只在想要更新状态时就与邻居相互作用,而不是保持强制性与其他代理一致。在第二部分中,我们研究了在不同的实践场景中的两分性追踪的问题,例如时间延迟,切换拓扑,随机网络,损失链接,矩阵干扰,外部噪声干扰以及无法实现的速度和加速度的领导者。在这些不同的场景设置下,质量的双分部分跟踪问题可以等效地转换为无限的亚辅助矩阵(ISUBSM)或无限的超稳态矩阵(ISUPSM)的产品收敛问题。在非负矩阵理论的帮助下,以及与定向边缘集合的组成有关的一些关键结果,我们建立了处理ISUBSM和ISUPSM产品收敛性的系统代数图形方法。最后,通过计算机模拟验证了所提出的方法的效率。
In this contribution, the properties of sub-stochastic matrix and super-stochastic matrix are applied to analyze the bipartite tracking issues of multi-agent systems (MASs) over signed networks, in which the edges with positive weight and negative weight are used to describe the cooperation and competition among the agents, respectively. For the sake of integrity of the study, the overall content is divided into two parts. In the first part, we examine the dynamics of bipartite tracking for first-order MASs, second-order MASs and general linear MASs in the presence of asynchronous interactions, respectively. Asynchronous interactions mean that each agent only interacts with its neighbors at the instants when it wants to update the state rather than keeping compulsory consistent with other agents. In the second part, we investigate the problems of bipartite tracing in different practical scenarios, such as time delays, switching topologies, random networks, lossy links, matrix disturbance, external noise disturbance, and a leader of unmeasurable velocity and acceleration. The bipartite tracking problems of MASs under these different scenario settings can be equivalently converted into the product convergence problems of infinite sub-stochastic matrices (ISubSM) or infinite super-stochastic matrices (ISupSM). With the help of nonnegative matrix theory together with some key results related to the compositions of directed edge sets, we establish systematic algebraic-graphical methods of dealing with the product convergence of ISubSM and ISupSM. Finally, the efficiency of the proposed methods is verified by computer simulations.