论文标题

联合学习符合合同理论:电动汽车网络的节能框架

Federated Learning Meets Contract Theory: Energy-Efficient Framework for Electric Vehicle Networks

论文作者

Saputra, Yuris Mulya, Nguyen, Diep N., Hoang, Dinh Thai, Vu, Thang Xuan, Dutkiewicz, Eryk, Chatzinotas, Symeon

论文摘要

在本文中,我们使用基于合同理论的经济模型为电动汽车(EV)网络提出了一个新型的节能框架,以最大程度地利用充电站(CSS)的利润并改善网络的社会福利。具体而言,我们首先引入了基于CS的和CS聚类基于CS聚类的分散联盟能源学习(DFEL)方法,该方法使CSS能够在本地培训自己的能源交易以预测能源需求。这样,每个CS都可以与其他CSS交换其学习的模型,以提高预测准确性,而无需揭示实际数据集并减少CSS之间的通信开销。基于能源需求预测,我们然后设计了基于合同的多项式单位代理(MPOA)方法。特别是,我们将CSS的效用最大化作为非授权能源合同问题,其中每个CS在智能电网提供商(SGP)和其他CSS合同的共同约束下最大化其效用。然后,我们证明了所有CSS的平衡合同解决方案的存在,并在SGP上开发了迭代算法以找到平衡。通过使用CSS交易在邓迪市的数据集(2017年至2018年之间的英国)的仿真结果,我们证明我们提出的方法可以实现能源需求预测的准确性提高24.63%,并且与其他机器学习算法相比,沟通高达96.3%。此外,就CSS的公用事业和网络的社会福利而言,我们提出的方法可以胜过35%和36%的基于非合同的经济模型。

In this paper, we propose a novel energy-efficient framework for an electric vehicle (EV) network using a contract theoretic-based economic model to maximize the profits of charging stations (CSs) and improve the social welfare of the network. Specifically, we first introduce CS-based and CS clustering-based decentralized federated energy learning (DFEL) approaches which enable the CSs to train their own energy transactions locally to predict energy demands. In this way, each CS can exchange its learned model with other CSs to improve prediction accuracy without revealing actual datasets and reduce communication overhead among the CSs. Based on the energy demand prediction, we then design a multi-principal one-agent (MPOA) contract-based method. In particular, we formulate the CSs' utility maximization as a non-collaborative energy contract problem in which each CS maximizes its utility under common constraints from the smart grid provider (SGP) and other CSs' contracts. Then, we prove the existence of an equilibrium contract solution for all the CSs and develop an iterative algorithm at the SGP to find the equilibrium. Through simulation results using the dataset of CSs' transactions in Dundee city, the United Kingdom between 2017 and 2018, we demonstrate that our proposed method can achieve the energy demand prediction accuracy improvement up to 24.63% and lessen communication overhead by 96.3% compared with other machine learning algorithms. Furthermore, our proposed method can outperform non-contract-based economic models by 35% and 36% in terms of the CSs' utilities and social welfare of the network, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源