论文标题
$β$ - 几乎是共同的孤儿
$β$-almost solitons on almost co-kähler manifolds
论文作者
论文摘要
本文的目的是研究$β$ - 几乎是yamabe solitons和$β$ - 几乎是co-kähler歧管上的ricci solitons。在本文中,我们证明,如果与reeb vector field $ξ$几乎是co-kähler歧管$ m $,则承认$β$承认具有潜在矢量$ξ$或$ b一键的yamabe solitons,其中$ b $是$ b $是一个平稳的功能,然后流动是$ k $ k $ k $ - 最大的co-kähllercorperold solord is the soliton is trivial is trivial trevial trivial trivial trivial trivial trivial trivial trivial trivial trivial trivial trivial。另外,我们表明,$ n> 1 $和$κ<0 $的封闭$(κ,μ)$ - 几乎是co-kähler歧管,几乎可以允许$β$ - 几乎是yamabe soliton,那么soliton是琐碎的,而且扩大了。然后,我们研究了几乎共同的co-kähler歧管,几乎是$β$ - 几乎是yamabe soliton或$β$ - 最多的ricci soliton,$ v $作为潜在的矢量场,$ v $是一个特殊的几何矢量场。
The object of the present paper is to study $β$-almost Yamabe solitons and $β$-almost Ricci solitons on almost co-Kähler manifolds. In this paper, we prove that if an almost co-Kähler manifold $M$ with the Reeb vector field $ξ$ admits a $β$-almost Yamabe solitons with the potential vector field $ξ$ or $bξ$, where $b$ is a smooth function then manifold is $K$-almost co-Kähler manifold or the soliton is trivial, respectively. Also, we show if a closed $(κ,μ)$-almost co-Kähler manifold with $n>1$ and $κ<0$ admits a $β$-almost Yamabe soliton then the soliton is trivial and expanding. Then we study an almost co-Kähler manifold admits a $β$-almost Yamabe soliton or $β$-almost Ricci soliton with $V$ as the potential vector field, $V$ is a special geometric vector field.