论文标题
波动方程的渐近边界可观察性
Asymptotic Boundary Observability For The Wave Equation On Simplices
论文作者
论文摘要
在本文中,我们考虑了带有差异边界条件的N维单纯形上的波方程。我们的主要结果是从单纯的任何一张脸上的渐近可观察性身份。结果的新方面是,它是大型渐近性而不是估计值,并且不需要对台球流的动态假设。证明主要使用零件集成。
In this paper, we consider the wave equation on an n-dimensional simplex with Dirichlet boundary conditions. Our main result is an asymptotic observability identity from any one face of the simplex. The novel aspects of the result are that it is a large-time asymptotic rather than an estimate, and it requires no dynamical assumptions on the billiard flow. The proof uses mainly integrations by parts.