论文标题

博士学位论文:在真实材料中寻找新兴的SU(4)对称性

PhD Thesis: Searching for an emergent SU(4) symmetry in real materials

论文作者

Yamada, Masahiko G.

论文摘要

从通常的$ \ mathrm {su}(2)$到$ \ mathrm {su}(n)$带有$ n> 2 $的旋转空间对称性的增强是有希望的尽管在冷原子系统中有一个建议,但在具有自旋轨道自由度的磁性材料中,很难通过微调实现$ \ mathrm {su}(n)$对称性。在这里,我们提出了一种新的机制,$ \ mathrm {su}(4)$对称性在强的旋转轨道耦合极限中出现。在$ d^1 $中,带有边缘阴离阴离子的过渡金属化合物,旋转轨道耦合产生了强烈依赖键的且显然是$ \ mathrm {su}(4)$ - 在$ J_ \ textrm {eff} = 3/2 $ QUARTET之间打破跳跃。但是,在蜂窝结构中,仪表转换将系统映射到$ \ mathrm {su}(4)$ - 对称哈伯德模型,这意味着尽管具有大型的自旋轨道耦合,该系统仍具有隐藏的对称性。在四分之一填充时的强烈排斥限制中,如预期的$α$ -ZRCL $ _3,$低能的有效型号是$ \ Mathrm {su}(4)$ heisenberg型号的heycomb lattice上的$ heisenberg型号,该模型无法具有三重的基础状态,并且预计可以容纳无易于旋转的旋转液体。在这样的量子自旋轨道液体中,由于它们之间的强烈沮丧相互作用,自旋和轨道自由度在低温下都被分数化和相关。与纯量子自旋液体中的纺纱子类似,量子旋转轨道液体不仅可以容纳Spinon激发,还可以在低温下进行费米金“ Orbitalon”激发,我们在这里以对称性旋转的Jahn-Teller阶段的轨道区分命名。

The enhancement of the spin-space symmetry from the usual $\mathrm{SU}(2)$ to $\mathrm{SU}(N)$ with $N>2$ is promising for finding nontrivial quantum spin liquids, but the realization of $\mathrm{SU}(N)$ spin systems in real materials is still challenging. Although there is a proposal in cold atomic systems, in magnetic materials with a spin-orbital degree of freedom it is difficult to achieve the $\mathrm{SU}(N)$ symmetry by fine tuning. Here we propose a new mechanism by which the $\mathrm{SU}(4)$ symmetry emerges in the strong spin-orbit coupling limit. In $d^1$ transition metal compounds with edge-sharing anion octahedra, the spin-orbit coupling gives rise to strongly bond-dependent and apparently $\mathrm{SU}(4)$-breaking hopping between the $J_\textrm{eff}=3/2$ quartets. However, in the honeycomb structure, a gauge transformation maps the system to an $\mathrm{SU}(4)$-symmetric Hubbard model, which means that the system has a hidden symmetry in spite of its large spin-orbit coupling. In the strong repulsion limit at quarter filling, as expected in $α$-ZrCl$_3,$ the low-energy effective model is the $\mathrm{SU}(4)$ Heisenberg model on the honeycomb lattice, which cannot have a trivial gapped ground state and is expected to host a gapless spin-orbital liquid. In such quantum spin-orbital liquids, both the spin and orbital degrees of freedom become fractionalized and correlated together at low temperature due to the strong frustrated interactions between them. Similarly to spinons in pure quantum spin liquids, quantum spin-orbital liquids can host not only spinon excitations, but also fermionic "orbitalon" excitations at low temperature, which we have named here in distinction from orbitons in the symmetry-broken Jahn-Teller phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源