论文标题
类型$(σ|μ)$的二次随机过程
Quadratic stochastic processes of type $(σ|μ)$
论文作者
论文摘要
我们在连续和离散的时间内构建二次随机过程(QSP)(也称为立方矩阵的马尔可夫过程)。这些是由(固定类型,称为$σ$)给出的动态系统随机立方矩阵,可满足Kolmogorov-Chapman方程(KCE)的类似物,相对于立方矩阵之间的固定乘法(称为$μ$)。 KCE的随机解决方案的存在(每次)的存在提供了称为QSP QSP的QSP的存在,称为$(σ|μ)$。在本文中,我们的目的是构建和研究QSP的轨迹,以专门选择随机立方矩阵的概念和此类矩阵的广泛乘法(称为Maksimov的乘法)。
We construct quadratic stochastic processes (QSP) (also known as Markov processes of cubic matrices) in continuous and discrete times. These are dynamical systems given by (a fixed type, called $σ$) stochastic cubic matrices satisfying an analogue of Kolmogorov-Chapman equation (KCE) with respect to a fixed multiplications (called $μ$) between cubic matrices. The existence of a stochastic (at each time) solution to the KCE provides the existence of a QSP called a QSP of type $(σ| μ)$. In this paper, our aim is to construct and study trajectories of QSPs for specially chosen notions of stochastic cubic matrices and a wide class of multiplications of such matrices (known as Maksimov's multiplications).