论文标题

DFNET:显着对象检测的判别特征提取和集成网络

DFNet: Discriminative feature extraction and integration network for salient object detection

论文作者

Noori, Mehrdad, Mohammadi, Sina, Majelan, Sina Ghofrani, Bahri, Ali, Havaei, Mohammad

论文摘要

尽管卷积神经网络具有强大的特征提取能力,但显着检测仍然存在一些挑战。在本文中,我们关注挑战的两个方面:i)由于显着对象以各种尺寸出现,因此使用单尺度卷积不会捕获合适的大小。此外,使用多尺度卷积而不考虑其重要性可能会使模型感到困惑。 ii)采用多层次功能有助于模型使用本地和全球环境。但是,处理所有功能同样会导致信息冗余。因此,需要有一种机制来智能选择不同级别的哪些功能是有用的。为了应对第一个挑战,我们提出了一个多尺度的注意指导模块。该模块不仅可以有效提取多尺度特征,而且还更加关注与显着对象规模相对应的更具歧视性特征图。为了应对第二项挑战,我们提出了一个基于注意力的多级集成器模块,以使模型能够为多级特征图分配不同权重。此外,我们的锐化损失函数指导我们的网络以更高的确定性和更模糊的显着物体的输出显着性图,并且其性能远比交叉渗透损失更好。我们第一次采用四个不同的骨干来显示我们方法的概括。在五个具有挑战性的数据集上进行的实验证明,我们的方法实现了最先进的性能。我们的方法也很快,可以实时速度运行。

Despite the powerful feature extraction capability of Convolutional Neural Networks, there are still some challenges in saliency detection. In this paper, we focus on two aspects of challenges: i) Since salient objects appear in various sizes, using single-scale convolution would not capture the right size. Moreover, using multi-scale convolutions without considering their importance may confuse the model. ii) Employing multi-level features helps the model use both local and global context. However, treating all features equally results in information redundancy. Therefore, there needs to be a mechanism to intelligently select which features in different levels are useful. To address the first challenge, we propose a Multi-scale Attention Guided Module. This module not only extracts multi-scale features effectively but also gives more attention to more discriminative feature maps corresponding to the scale of the salient object. To address the second challenge, we propose an Attention-based Multi-level Integrator Module to give the model the ability to assign different weights to multi-level feature maps. Furthermore, our Sharpening Loss function guides our network to output saliency maps with higher certainty and less blurry salient objects, and it has far better performance than the Cross-entropy loss. For the first time, we adopt four different backbones to show the generalization of our method. Experiments on five challenging datasets prove that our method achieves the state-of-the-art performance. Our approach is fast as well and can run at a real-time speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源