论文标题
距离矩阵相关光谱
Distance matrix correlation spectrum of graphs
论文作者
论文摘要
令$ g $为简单的,连接的图,$ \ mathcal {d}(g)$是$ g $的距离矩阵,而$ tr(g)$是$ g $的顶点传输的对角线矩阵。 $ g $的距离拉普拉斯矩阵和无距离的laplacian矩阵由$ \ nathcal {l}(g)= tr(g)= tr(g) - \ Mathcal {d}(g)$ and $ \ nathcal {q}(q} Q}(q}(g)= tr(g)= tr(g)+\ \ \ \ \ mathcal {d d} $,分析。 $ \ MATHCAL {D}(G)$,$ \ MATHCAL {L}(G)$和$ \ MATHCAL {Q}(G)$的特征值称为$ \ Mathcal {d} - $ spectrum,$ spectrum,$ \ mathcal {l} - $ spectrum and $ spectrum and $ \ mathcal and $ \ seppers} - $ g $的广义距离矩阵定义为$ \ nathcal {d}_α(g)=αtr(g)+(1-α)\ Mathcal {d}(g),〜0 \ 0 \leqα\ leq1 $,$ g $ $ g $ $ g)是$ $ $ $ $ $ $ $ $ $ nmate。在本文中,我们对$ \ Mathcal {d} - $ spectrum,$ \ Mathcal {l} - $ spectrum和$ \ Mathcal {q} - $ spectrum的某些图表获得的某些图形频谱。此外,我们基于其他图理论参数的$ g $的广义距离频谱半径及其line Gragr $ l(g)$的广义距离频谱半径,并表征极端图。最后,我们研究了某些复合图的广义距离光谱。
Let $G$ be a simple, connected graph, $\mathcal{D}(G)$ be the distance matrix of $G$, and $Tr(G)$ be the diagonal matrix of vertex transmissions of $G$. The distance Laplacian matrix and distance signless Laplacian matrix of $G$ are defined by $\mathcal{L}(G) = Tr(G)-\mathcal{D}(G)$ and $\mathcal{Q}(G) = Tr(G)+\mathcal{D}(G)$, respectively. The eigenvalues of $\mathcal{D}(G)$, $\mathcal{L}(G)$ and $\mathcal{Q}(G)$ is called the $\mathcal{D}-$spectrum, $\mathcal{L}-$spectrum and $\mathcal{Q}-$spectrum, respectively. The generalized distance matrix of $G$ is defined as $\mathcal{D}_α(G)=αTr(G)+(1-α)\mathcal{D}(G),~0\leqα\leq1$, and the generalized distance spectral radius of $G$ is the largest eigenvalue of $\mathcal{D}_α(G)$. In this paper, we give a complete description of the $\mathcal{D}-$spectrum, $\mathcal{L}-$spectrum and $\mathcal{Q}-$spectrum of some graphs obtained by operations. In addition, we present some new upper and lower bounds on the generalized distance spectral radius of $G$ and of its line graph $L(G)$, based on other graph-theoretic parameters, and characterize the extremal graphs. Finally, we study the generalized distance spectrum of some composite graphs.